ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: AWI Bio-22-95014
    Description / Table of Contents: The deciduous needle tree larch (Larix Mill.) covers more than 80% of the Asian boreal forests. Only a few Larix species constitute the vast forests and these species differ markedly in their ecological traits, most importantly in their ability to grow on and stabilize underlying permafrost. The pronounced dominance of the summergreen larches makes the Asian boreal forests unique, as the rest of the northern hemisphere boreal forests is almost exclusively dominated by evergreen needle-leaf forests. Global warming is impacting the whole world but is especially pronounced in the arctic and boreal regions. Although adapted to extreme climatic conditions, larch forests are sensitive to varying climatic conditions. By their sheer size, changes in Asian larch forests as range shifts or changes in species composition and the resulting vegetation-climate feedbacks are of global relevance. It is however still uncertain if larch forests will persist under the ongoing warming climate or if they will be replaced by evergreen forests. It is therefore of great importance to understand how these ecosystems will react to future climate warmings and if they will maintain their dominance. One step in the better understanding of larch dynamics is to study how the vast dominant forests developed and why they only established in northern Asia. A second step is to study how the species reacted to past changes in the climate. The first objective of this thesis was to review and identify factors promoting Asian larch dominance. I achieved this by synthesizing and comparing reported larch occurrences and influencing components on the northern hemisphere continents in the present and in the past. The second objective was to find a possibility to directly study past Larix populations in Siberia and specifically their genetic variation, enabling the study of geographic movements. For this, I established chloroplast enrichment by hybridization capture from sedimentary ancient DNA (sedaDNA) isolated from lake sediment records. The third objective was to use the established method to track past larch populations, their glacial refugia during the Last Glacial Maximum (LGM) around 21,000 years before present (ka BP), and their post-glacial migration patterns. To study larch promoting factors, I compared the present state of larch species ranges, areas of dominance, their bioclimatic niches, and the distribution on different extents and thaw depths of permafrost. The species comparison showed that the bioclimatic niches greatly overlap between the American and Asian species and that it is only in the extremely continental climates in which only the Asian larch species can persist. I revealed that the area of dominance is strongly connected to permafrost extent but less linked to permafrost seasonal thaw depths. Comparisons of the paleorecord of larch between the continents suggest differences in the recolonization history. Outside of northern Asia and Alaska, glacial refugial populations of larch were confined to the southern regions and thus recolonization could only occur as migration from south to north. Alaskan larch populations could not establish wide-range dominant forest which could be related to their own genetically depletion as separated refugial population. In Asia, it is still unclear whether or not the northern refugial populations contributed and enhanced the postglacial colonization or whether they were replaced by populations invading from the south in the course of climate warming. Asian larch dominance is thus promoted partly by adaptions to extremely continental climates and by adaptations to grow on continuous permafrost but could be also connected to differences in glacial survival and recolonization history of Larix species. Except for extremely rare macrofossil findings of fossilized cones, traditional methods to study past vegetation are not able to distinguish between larch species or populations. Within the scope of this thesis, I therefore established a method to retrieve genetic information of past larch populations to distinguish between species. Using the Larix chloroplast genome as target, I successfully applied the method of DNA target enrichment by hybridization capture on sedaDNA samples from lake records and showed that it is able to distinguish between larch species. I then used the method on samples from lake records from across Siberia dating back up to 50 ka BP. The results allowed me to address the question of glacial survival and post-glacial recolonization mode in Siberian larch species. The analyzed pattern showed that LGM refugia were almost exclusively constituted by L. gmelinii, even in sites of current L. sibirica distribution. For included study sites, L. sibirica migrated into its extant northern distribution area only in the Holocene. Consequently, the post-glacial recolonization of L. sibirica was not enhanced by northern glacial refugia. In case of sites in extant distribution area of L. gmelinii, the absence of a genetic turn-over point to a continuous population rather than an invasion of southern refugia. The results suggest that climate has a strong influence on the distribution of Larix species and that species may also respond differently to future climate warming. Because species differ in their ecological characteristics, species distribution is also relevant with respect to further feedbacks between vegetation and climate. With this thesis, I give an overview of present and past larch occurrences and evaluate which factors promote their dominance. Furthermore, I provide the tools to study past Larix species and give first important insights into the glacial history of Larix populations.
    Type of Medium: Dissertations
    Pages: x, 121 Seiten , Illustrationen
    Language: English
    Note: Dissertation, Universität Potsdam, 2022 , Table of Contents Summary Deutsche Zusammenfassung Table of Contents 1 Introduction 1.1 Larix forests in a changing climate 1.2 The genus Larix 1.3 Larix distribution in the world and their dominance in northern Asia 1.4 Methods to study past species dynamics 1.4.1 Modern genetic marker studies 1.4.2 Lake sediments as archives of the past 1.4.3 Pollen and macrofossils 1.4.4 Metabarcoding of sedimentary ancient DNA 1.4.5 Metagenomic shotgun sequencing 1.4.6 Target enrichment by hybridization capture 1.5 Thesis Objectives 1.6 Thesis outline & author contributions 2 Manuscript I 2.1 Abstract 2.2 Introduction 2.3 Material and methods 2.3.1 Bioclimatic limits 2.3.2 Pollen, macrofossil, and DNA datasets 2.3.3 Ice sheets 2.4 Results 2.4.1 Bioclimatic limits of Larix and its distribution on permafrost 2.4.2 Glacial occurrence patterns of Larix 2.5 Discussion 2.5.1 Are differences in species bioclimatic limits responsible for disparity in Larix distribution across continents? 2.5.2 Do high latitude glacial refugia guarantee larch dominance? 2.5.3 What role does postglacial migration play in larch dominance? 2.5.4 Fire as an additional factor 2.5.5 Outlook 2.6 Conclusion 2.7 Acknowledgements 2.8 Author contributions 2.9 References 3 Manuscript II 3.1 Abstract 3.2 Introduction 3.3 Methods 3.3.1 Sample material 3.3.2 Laboratory work 3.3.3 Data analysis 3.4 Results 3.4.1 Overview of the shotgun and hybridization capture data sets 3.4.2 Ancient DNA authenticity 3.4.3 Retrieval of the Larix chloroplast genome 3.5 Discussion 3.5.1 Taxonomic classification—conservative approach results in low numbers of assignment 3.5.2 Target enrichment success—Larix reads increased by orders of magnitude along with other taxonomic groups 3.5.3 Complete retrieval of ancient Larix chloroplast genomes 3.5.4 Larix sibirica variants present over time 3.5.5 Larch forest decline over the last 7000 years 3.6 Conclusion 3.7 Acknowledgments 3.8 Author contributions 3.9 References 4 Manuscript III 4.1 Abstract 4.2 Introduction 4.3 Results & Discussion 4.3.1 Chloroplast and repetitive DNA enrichment in the sedaDNA samples 4.3.2 A wider pre-glacial distribution of L. sibirica 4.3.3 Larix gmelinii formed northern LGM refugia across Siberia 4.3.4 Postglacial colonization history - differences among larch species 4.3.5 Environment likely plays a more important role than biogeography 4.4 Conclusion 4.5 Material & methods 4.5.1 Sample material 4.5.2 Sequence data analysis 4.6 Data availability 4.7 Acknowledgments 4.8 Author contributions 4.9 References 5 Discussion and synthesis 5.1 Hybridization capture is a well-suited method to study ancient species dynamics 5.1.1 Advantages and limitations of shotgun sequencing 5.1.2 Successful hybridization capture enrichment using chloroplast DNA 5.1.3 Challenges in single-copy target enrichment 5.1.4 Limitations and potentials to improve sedaDNA capture studies 5.2 Factors promoting Asian larch dominance 5.3 Drivers of Larix species distribution 5.3.1 Implications for larch forests under climate warming 5.4 Conclusion 5.5 Outlook 6 References 7 Appendix 7.1 Appendix to manuscript I 7.2 Appendix to manuscript II 7.3 Appendix to manuscript III 7.3.1 Material and Methods 7.3.2 Additional Results & Discussions 7.3.3 References Acknowledgements Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: AWI Bio-23-95302
    Description / Table of Contents: Climate change of anthropogenic origin is affecting Earth’s biodiversity and therefore ecosystems and their services. High latitude ecosystems are even more impacted than the rest of Northern Hemisphere because of the amplified polar warming. Still, it is challenging to predict the dynamics of high latitude ecosystems because of complex interaction between abiotic and biotic components. As the past is the key to the future, the interpretation of past ecological changes to better understand ongoing processes is possible. In the Quaternary, the Pleistocene experienced several glacial and interglacial stages that affected past ecosystems. During the last Glacial, the Pleistocene steppe-tundra was covering most of unglaciated northern hemisphere and disappeared in parallel to the megafauna’s extinction at the transition to the Holocene (~11,700 years ago). The origin of the steppe-tundra decline is not well understood and knowledge on the mechanisms, which caused shifts in past communities and ecosystems, is of high priority as they are likely comparable to those affecting modern ecosystems. Lake or permafrost core sediments can be retrieved to investigate past biodiversity at transitions between glacial and interglacial stages. Siberia and Beringia were the origin of dispersal of the steppe-tundra, which make investigation this area of high priority. Until recently, macrofossils and pollen were the most common approaches. They are designed to reconstruct past composition changes but have limit and biases. Since the end of the 20th century, sedimentary ancient DNA (sedaDNA) can also be investigated. My main objectives were, by using sedaDNA approaches to provide scientific evidence of compositional and diversity changes in the Northern Hemisphere ecosystems at the transition between Quaternary glacial and interglacial stages. In this thesis, I provide snapshots of entire ancient ecosystems and describe compositional changes between Quaternary glacial and interglacial stages, and confirm the vegetation composition and the spatial and temporal boundaries of the Pleistocene steppe-tundra. I identify a general loss of plant diversity with extinction events happening in parallel of megafauna’ extinction. I demonstrate how loss of biotic resilience led to the collapse of a previously well-established system and discuss my results in regards to the ongoing climate change. With further work to constrain biases and limits, sedaDNA can be used in parallel or even replace the more established macrofossils and pollen approaches as my results support the robustness and potential of sedaDNA to answer new palaeoecological questions such as plant diversity changes, loss and provide snapshots of entire ancient biota.
    Description / Table of Contents: Der vom Menschen verursachte Klimawandel wirkt sich auf die biologische Vielfalt der Erde und damit auf die Ökosysteme und ihre Leistungen aus. Die Ökosysteme in den hohen Breitengraden sind aufgrund der verstärkten Erwärmung an den Polen noch stärker betroffen als der Rest der nördlichen Hemisphäre. Dennoch ist es schwierig, die Dynamik von Ökosystemen in den hohen Breitengraden vorherzusagen, da die Wechselwirkungen zwischen abiotischen und biotischen Komponenten sehr komplex sind. Da die Vergangenheit der Schlüssel zur Zukunft ist, ist die Interpretation vergangener ökologischer Veränderungen möglich, um laufende Prozesse besser zu verstehen. Im Quartär durchlief das Pleistozän mehrere glaziale und interglaziale Phasen, welche die Ökosysteme der Vergangenheit beeinflussten. Während des letzten Glazials bedeckte die pleistozäne Steppentundra den größten Teil der unvergletscherten nördlichen Hemisphäre und verschwand parallel zum Aussterben der Megafauna am Übergang zum Holozän (vor etwa 11 700 Jahren). Der Ursprung des Rückgangs der Steppentundra ist nicht gut erforscht, und die Kenntnis über die Mechanismen, die zu den Veränderungen in den vergangenen Lebensgemeinschaften und Ökosystemen geführt haben, ist von hoher Priorität, da sie wahrscheinlich mit denen vergleichbar sind, die sich auf moderne Ökosysteme auswirken. Durch die Entnahme von See- oder Permafrostkernsedimenten kann die vergangene Artenvielfalt an den Übergängen zwischen Eis- und Zwischeneiszeiten untersucht werden. Sibirien und Beringia waren der Ursprung der Ausbreitung der Steppentundra, weshalb die Untersuchung dieses Gebiets hohe Priorität hat. Bis vor kurzem waren Makrofossilien und Pollen die gängigsten Methoden. Sie dienen der Rekonstruktion vergangener Veränderungen in der Zusammensetzung der Bevölkerung, haben aber ihre Grenzen und Schwächen. Seit Ende des 20. Jahrhunderts kann auch sedimentäre alte DNA (sedaDNA) untersucht werden. Mein Hauptziel war es, durch den Einsatz von sedaDNA-Ansätzen wissenschaftliche Beweise für Veränderungen in der Zusammensetzung und Vielfalt der Ökosysteme der nördlichen Hemisphäre am Übergang zwischen den quartären Eiszeiten und Zwischeneiszeiten zu liefern. In dieser Arbeit liefere ich Momentaufnahmen ganzer alter Ökosysteme und beschreibe die Veränderungen in der Zusammensetzung zwischen Quartärglazialen und Interglazialen und bestätige die Vegetationszusammensetzung sowie die räumlichen und zeitlichen Grenzen der pleistozänen Steppentundra. Ich stelle einen allgemeinen Verlust der Pflanzenvielfalt fest, wobei das Aussterben der Pflanzen parallel zum Aussterben der Megafauna verlief. Ich zeige auf, wie der Verlust der biotischen Widerstandsfähigkeit zum Zusammenbruch eines zuvor gut etablierten Systems führte, und diskutiere meine Ergebnisse im Hinblick auf den laufenden Klimawandel. Mit weiteren Arbeiten zur Eingrenzung von Verzerrungen und Grenzen kann sedaDNA parallel zu den etablierteren Makrofossilien- und Pollenansätzen verwendet werden oder diese sogar ersetzen, da meine Ergebnisse die Robustheit und das Potenzial von sedaDNA zur Beantwortung neuer paläoökologischer Fragen wie Veränderungen der Pflanzenvielfalt und -verluste belegen und Momentaufnahmen ganzer alter Biota liefern.
    Type of Medium: Dissertations
    Pages: vi, 217 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Dissertation, Universität Potsdam, 2023 , TABLE OF CONTENTS Acknowledgements Summary Zusammenfassung 1 General introduction 1.1 A changing world 1.1.1 Global changes of anthropogenic origin 1.1.2 Amplified crisis in the high latitudes 1.2 The past is the key to the future 1.2.1 The Quaternary glacial and interglacial stages 1.2.2 The Beringia study case 1.3 Investigating past biodiversity 1.3.1 Traditional tools 1.3.2 Newest sedaDNA proxies 1.4 Motivation and aims of the thesis 1.5 Structure of the thesis 1.6 Author’s contributions 2 Manuscript I 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Geographical settings 2.3.2 Fieldwork and subsampling 2.3.3 Core splicing and dating 2.3.4 Sediment-geochemical analyses 2.3.5 Pollen analysis 2.3.6 Molecular genetic preparation 2.3.7 Processing of sedaDNA data 2.3.8 Statistical analysis and visualization 2.4 Results 2.4.1 Age model 2.4.2 Sediment-geochemical core composition 2.4.3 Pollen stratigraphy 2.4.4 sedaDNA composition 2.4.5 Comparison between pollen and sedaDNA 2.4.6 Taxa richness investigation 2.5 Discussion 2.5.1 Proxy validation 2.5.2 Vegetation compositional changes in response to climate inferred from pollen and sedaDNA records 2.5.3 The steppe-tundra of the Late Pleistocene 2.5.4 The disrupted Pleistocene-Holocene transition 2.5.5 The boreal forest of the Holocene 2.5.6 Changes in vegetation richness through the Pleistocene/Holocene transition inferred from the sedaDNA record 2.6 Conclusion Data availability statement Funding References 3 Manuscript II 3.1 Abstract 3.2 Introduction 3.3 Material and Method 3.3.1 Site description and timeframe 3.3.2 Sampling, DNA extraction and PCR 3.3.3 Filtering and cleaning dataset 3.3.4 Identification of taxa – species signal 3.3.5 Resampling 3.3.6 Assessment of the species pool stability 3.3.7 Quantification of extinct and extirpated taxa 3.3.8 Characterisation of species and candidate species 3.4 Results 3.4.1 Changes in the composition and species pool at the Pleistocene - Holocene transition 3.4.2 Decrease in the regional plant species richness between the Pleistocene and the Holocene 3.4.3 Identification of loss taxa events 3.4.4 Characterisation of lost taxa 3.5 Discussion 3.5.1 Biotic and abiotic changes in the ecosystem - a cocktail for extinction 3.5.2 Identification and quantification of potential plant taxa loss 3.5.3 Characterisation of potential taxa loss 3.5.4 Limits of the method 3.5.5 Conclusions and perspectives Funding References 4 Manuscript III 4.1 Abstract 4.2 Introduction 4.3 Material & Methods 4.3.1 Fieldwork and subsampling 4.3.2 Chronology 4.3.3 Pollen analysis 4.3.4 Isolation of sedimentary ancient DNA 4.3.5 Metabarcoding approach 4.3.6 Shotgun approach 4.3.7 Bioinformatic processing 4.4 Results 4.4.1 General results of the three approaches: pollen, metabarcoding and shotgun sequencing 4.4.2 Plants (Viridiplantae) 4.4.3 Fungi 4.4.4 Mammals (Mammalia) 4.4.5 Birds (Aves) 4.4.6 Insects (Insecta) 4.4.7 Prokaryotes (Bacteria, Archaea) and Viruses 4.5 Discussion 4.5.1 Interglacial communities 4.5.2 Glacial communities 4.5.3 Potential and limitations of the sedaDNA shotgun approach applied to ancient permafrost sediments 4.6 Conclusions Data availability statement Funding References 5 Synthesis 5.1 Ecological changes between glacial and interglacial stages 5.1.1 Changes in the compositional structure 5.1.2 Loss of plant diversity 5.1.3 Potential drivers of change 5.2 High potential of sedaDNA for past biodiversity reconstruction 5.3 Conclusions and future perspectives Bibliography Appendices Appendix 1: Supplementary material for Manuscript I Appendix 2: Supplementary material for Manuscript II Appendix 3: Supplementary material for Manuscript III Appendix 4: Manuscript IV Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-08-01
    Description: Relict woolly mammoth (Mammuthus primigenius) populations survived on several small Beringian islands for thousands of years after mainland populations went extinct. Here we present multiproxy paleoenvironmental records to investigate the timing, causes, and consequences of mammoth disappearance from St. Paul Island, Alaska. Five independent indicators of extinction show that mammoths survived on St. Paul until 5,600 ± 100 y ago. Vegetation composition remained stable during the extinction window, and there is no evidence of human presence on the island before 1787 CE, suggesting that these factors were not extinction drivers. Instead, the extinction coincided with declining freshwater resources and drier climates between 7,850 and 5,600 y ago, as inferred from sedimentary magnetic susceptibility, oxygen isotopes, and diatom and cladoceran assemblages in a sediment core from a freshwater lake on the island, and stable nitrogen isotopes from mammoth remains. Contrary to other extinction models for the St. Paul mammoth population, this evidence indicates that this mammoth population died out because of the synergistic effects of shrinking island area and freshwater scarcity caused by rising sea levels and regional climate change. Degradation of water quality by intensified mammoth activity around the lake likely exacerbated the situation. The St. Paul mammoth demise is now one of the best-dated prehistoric extinctions, highlighting freshwater limitation as an overlooked extinction driver and underscoring the vulnerability of small island populations to environmental change, even in the absence of human influence.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-03-13
    Description: The arrival of bison in North America marks one of the most successful large-mammal dispersals from Asia within the last million years, yet the timing and nature of this event remain poorly determined. Here, we used a combined paleontological and paleogenomic approach to provide a robust timeline for the entry and subsequent evolution of bison within North America. We characterized two fossil-rich localities in Canada’s Yukon and identified the oldest well-constrained bison fossil in North America, a 130,000-y-old steppe bison, Bison cf. priscus. We extracted and sequenced mitochondrial genomes from both this bison and from the remains of a recently discovered, ∼120,000-y-old giant long-horned bison, Bison latifrons, from Snowmass, Colorado. We analyzed these and 44 other bison mitogenomes with ages that span the Late Pleistocene, and identified two waves of bison dispersal into North America from Asia, the earliest of which occurred ∼195–135 thousand y ago and preceded the morphological diversification of North American bison, and the second of which occurred during the Late Pleistocene, ∼45–21 thousand y ago. This chronological arc establishes that bison first entered North America during the sea level lowstand accompanying marine isotope stage 6, rejecting earlier records of bison in North America. After their invasion, bison rapidly colonized North America during the last interglaciation, spreading from Alaska through continental North America; they have been continuously resident since then.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2016-06-06
    Description: The Ice Free Corridor has been invoked as a route for Pleistocene human and animal dispersals between eastern Beringia and more southerly areas of North America. Despite the significance of the corridor, there are limited data for when and how this corridor was used. Hypothetical uses of the corridor include: the first expansion of humans from Beringia into the Americas, northward postglacial expansions of fluted point technologies into Beringia, and continued use of the corridor as a contact route between the north and south. Here, we use radiocarbon dates and ancient mitochondrial DNA from late Pleistocene bison fossils to determine the chronology for when the corridor was open and viable for biotic dispersals. The corridor was closed after ∼23,000 until 13,400 calendar years ago (cal y BP), after which we find the first evidence, to our knowledge, that bison used this route to disperse from the south, and by 13,000 y from the north. Our chronology supports a habitable and traversable corridor by at least 13,000 cal y BP, just before the first appearance of Clovis technology in interior North America, and indicates that the corridor would not have been available for significantly earlier southward human dispersal. Following the opening of the corridor, multiple dispersals of human groups between Beringia and interior North America may have continued throughout the latest Pleistocene and early Holocene. Our results highlight the utility of phylogeographic analyses to test hypotheses about paleoecological history and the viability of dispersal routes over time.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
  • 9
    Publication Date: 2015-06-02
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...