ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Soil Biology and Biochemistry 25 (1993), S. 1649-1655 
    ISSN: 0038-0717
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1998), S. 36-43 
    ISSN: 1432-0789
    Keywords: Key words Nitrous oxide ; Forage crops ; Spring barley ; Nitrogen fertiliser ; Thawing and freezing cycles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  N2O emission rates from a sandy loam soil were measured in a field experiment with 2 years of perennial forage crops (ryegrass, ryegrass-red clover, red clover) and 1 year of spring barley cultivation. Spring barley was sown after the incorporation of the forage crop residues. All spring barley plots received 40 kg N ha–1 N fertiliser. Ryegrass, ryegrass-red clover and red clover plots were fertilised with 350 kg N ha–1, 175 kg N ha–1 and 0 kg N ha–1, respectively. From June 1994 to February 1997, N2O fluxes were continuously estimated using very large, closed soil cover boxes (5.76 m2). In order to compare the growing crops, the 33 months of investigation were separated into three vegetation periods (March–September) and three winter periods (October–February). All agronomic treatments (fertilisation, harvest and tillage) were carried out during the vegetation period. Large temporal changes were found in the N2O emission rates. The data were approximately log-normally distributed. Forty-seven percent of the annual N2O losses were observed to occur during winter, and mainly resulted from N2O production during daily thawing and freezing cycles. No relationship was found between the N2O emissions during the winter and the vegetation period. During the vegetation period, N2O losses and yields were significantly different between the three forage crops. The unfertilised clover plot produced the highest yields and the lowest N2O losses on this soil compared to the highly fertilised ryegrass plot. Total N2O losses from soil under spring barley were higher than those from soil under the forage crops; this was mainly a consequence of N2O emissions after the incorporation of the forage crop residues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 32 (2000), S. 73-81 
    ISSN: 1432-0789
    Keywords: Key words Active microbial biomass ; Substrate-induced respiration ; Sustaining microbial biomass ; Growth-response description
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  A model describing the respiration curves of glucose-amended soils was applied to the characterization of microbial biomass. Both lag and exponential growth phases were simulated. Fitted parameters were used for the determination of the growing and sustaining fractions of the microbial biomass as well as its specific growth rate (μ max). These microbial biomass characteristics were measured periodically in a loamy silt and a sandy loam soil incubated under laboratory conditions. Less than 1% of the biomass oxidizing glucose was able to grow immediately due to the chronic starvation of the microbial populations in situ. Glucose applied at a rate of 0.5 mg C g–1 increased that portion to 4–10%. Both soils showed similar dynamics with a peak in the growing biomass at day 3 after initial glucose amendment, while the total (sustaining plus growing) biomass was maximum at day 7. The microorganisms in the loamy silt soil showed a larger growth potential, with the growing biomass increasing 16-fold after glucose application compared to a sevenfold increase in the sandy loam soil. The results gained by the applied kinetic approach were compared to those obtained by the substrate-induced respiration (SIR) technique for soil microbial biomass estimation, and with results from a simple exponential model used to describe the growth response. SIR proved to be only suitable for soils that contain a sustaining microbial biomass and no growing microbial biomass. The exponential model was unsuitable for situations where a growing microbial biomass was associated with a sustaining biomass. The kinetic model tested in this study (Panikov and Sizova 1996) proved to describe all situations in a meaningful, quantitative and statistically reliable way.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0789
    Keywords: Phytotron study ; Corn plants ; Denitrification ; 15N balance ; N2 flux by 15N method ; N2O flux by gas chromatography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Containers filled with soil mixed with potassium nitrate highly enriched in 15N were planted with corn (Zea mays L.) and kept in a phytotron under controlled conditions for 79 days. Soil water content was normally maintained at exactly 60% water-holding capacity (−33 kPa), but it was increased several times to 85% (−5 kPa) for short periods to favour denitrification. The soil headspace was sealed from the phytotron atmosphere and aerated by a continuous stream of air. Nitrous oxide emission was measured by estimating the N2O concentration differences in the air entering and leaving the containers. Emission of N2 was estimated by mass spectroscopy from changes in the N2 composition in the temporarily enclosed soil headspace. Both methods were carefully checked for accuracy by different tests. At specific times during the experiment the distribution of 15N between plants and soil was determined and a 15N balance established. Emission of N gases peaked at times of increased water content and reached maxima of 149 and 142 μg N pot−1 day−1 for N2O and N2, respectively. While N losses of 5% ± 2% were indicated by the 15N balance, only 1.1% ± 0.3% loss from 2.7 g applied N was estimated from the N2O and N2 measurements after 79 days. Possible reasons for these differences are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-0867
    Keywords: agriculture ; carbon dioxide ; methane ; mitigation ; nitrous oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Technologies to reduce net emissions of carbon dioxide, methane and nitrous oxide within the agriculture sector were reviewed to estimate the global potential for mitigation of these radiatively active greenhouse gases. Our estimates of the potential reduction of radiative forcing by the agricultural sector range from 1.15-3.3 Gt C equivalents per year. Of the total potential reduction, approximately 32% could result from reduction in CO2 emissions, 42% of carbon offsets by biofuel production on 15% of existing croplands, 16% from reduced CH4 emissions and 10% from reduced emissions of N2O. Agriculture encompasses large regional differences in management practices and rates of potential adoption of mitigation practices. Acceptability of mitigation options will depend on the extent to which sustainable production will be achieved or maintained and benefits will accrue to farmers. Technologies such as no-till farming and strategic fertilizer placement and timing are now being adopted for reasons other than concern for climate change issues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: carbon dioxide ; infra-red gas analysis ; microbial biomass ; soil respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An automated system for continuous soil respiration and microbial biomass measurements based on Infra Red Gas Analysis was constructed. The switching device is computer controlled and allows hourly measurements of up to 24 samples when switching intervals of 2.5 min are selected. This allows the use of the substrate-induced respiration method for biomass determination. A software package to run the system was developed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5036
    Keywords: dentrification ; nitrification ; nitrification inhibitors ; N2O
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In this paper we discuss three topics concerning N2O emissions from agricultural systems. First, we present an appraisal of N2O emissions from agricultural soils (Assessment). Secondly, we discuss some recent efforts to improve N2O flux estimates in agricultural fields (Measurement), and finally, we relate recent studies which use nitrification inhibitors to decrease N2O emissions from N-fertilized fields (Mitigation). To assess the global emission of N2O from agricultural soils, the total flux should represent N2O from all possible sources; native soil N, N from recent atmospheric deposition, past years fertilization, N from crop residues, N2O from subsurface aquifers below the study area, and current N fertilization. Of these N sources only synthetic fertilizer and animal manures and the area of fields cropped with legumes have sufficient global data to estimate their input for N2O production. The assessment of direct and indirect N2O emissions we present was made by multiplying the amount of fertilizer N applied to agricultural lands by 2% and the area of land cropped to legumes by 4 kg N2O-N ha-1. No regard to method of N application, type of N, crop, climate or soil was given in these calculations, because the data are not available to include these variables in large scale assessments. Improved assessments should include these variables and should be used to drive process models for field, area, region and global scales. Several N2O flux measurement techniques have been used in recent field studies which utilize small and ultralarge chambers and micrometeorological along with new analytical techniques to measure N2O fluxes. These studies reveal that it is not the measurement technique that is providing much of the uncertainty in N2O flux values found in the literature but rather the diverse combinations of physical and biological factors which control gas fluxes. A careful comparison of published literature narrows the range of observed fluxes as noted in the section on assessment. An array of careful field studies which compare a series of crops, fertilizer sources, and management techniques in controlled parallel experiments throughout the calendar year are needed to improve flux estimates and decrease uncertainty in prediction capability. There are a variety of management techniques which should conserve N and decrease the amount of N application needed to grow crops and to limit N2O emissions. Using nitrification inhibitors is an option for decreasing fertilizer N use and additionally directly mitigating N2O emissions. Case studies are presented which demonstrate the potential for using nitrification inhibitors to limit N2O emissions from agricultural soils. Inhibitors may be selected for climatic conditions and type of cropping system as well as the type of nitrogen (solid mineral N, mineral N in solution, or organic waste materials) and applied with the fertilizers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Climatic change 40 (1998), S. 7-38 
    ISSN: 1573-1480
    Keywords: N2O emissions ; mitigation ; agriculture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Agricultural cropping and animal production systems are important sources of atmospheric nitrous oxide (N2O). The assessment of the importance of N fertilization from synthetic fertilizer, animal wastes used as fertilizers and from N incorporated into the soil through biological N fixation, to global N2O emissions presented in this paper suggests that this source has been underestimated. We estimate that agricultural systems produce about one fourth of global N2O emissions. Methods of mitigating these emissions are presented which, if adopted globally could decrease annual N2O emissions from cropped soils by about 20%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Climatic change 40 (1998), S. 39-80 
    ISSN: 1573-1480
    Keywords: Methane emissions ; mitigation ; agriculture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Agricultural crop and animal production systems are important sources and sinks for atmospheric methane (CH4). The major CH4 sources from this sector are ruminant animals, flooded rice fields, animal waste and biomass burning which total about one third of all global emissions. This paper discusses the factors that influence CH4 production and emission from these sources and the aerobic soil sink for atmospheric CH4 and assesses the magnitude of each source. Potential methods of mitigating CH4 emissions from the major sources could lead to improved crop and animal productivity. The global impact of using the mitigation options suggested could potentially decrease agricultural CH4 emissions by about 30%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1987-01-01
    Print ISSN: 0361-5995
    Electronic ISSN: 1435-0661
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...