ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2015-08-07
    Description: There is a large amount of organic carbon stored in permafrost in the northern high latitudes, which may become vulnerable to microbial decomposition under future climate warming. In order to estimate this potential carbon–climate feedback it is necessary to correctly simulate the physical dynamics of permafrost within global Earth system models (ESMs) and to determine the rate at which it will thaw. Additional new processes within JULES, the land-surface scheme of the UK ESM (UKESM), include a representation of organic soils, moss and bedrock and a modification to the snow scheme; the sensitivity of permafrost to these new developments is investigated in this study. The impact of a higher vertical soil resolution and deeper soil column is also considered. Evaluation against a large group of sites shows the annual cycle of soil temperatures is approximately 25 % too large in the standard JULES version, but this error is corrected by the model improvements, in particular by deeper soil, organic soils, moss and the modified snow scheme. A comparison with active layer monitoring sites shows that the active layer is on average just over 1 m too deep in the standard model version, and this bias is reduced by 70 cm in the improved version. Increasing the soil vertical resolution allows the full range of active layer depths to be simulated; by contrast, with a poorly resolved soil at least 50 % of the permafrost area has a maximum thaw depth at the centre of the bottom soil layer. Thus all the model modifications are seen to improve the permafrost simulations. Historical permafrost area corresponds fairly well to observations in all simulations, covering an area between 14 and 19 million km2. Simulations under two future climate scenarios show a reduced sensitivity of permafrost degradation to temperature, with the near-surface permafrost loss per degree of warming reduced from 1.5 million km2 °C−1 in the standard version of JULES to between 1.1 and 1.2 million km2 °C−1 in the new model version. However, the near-surface permafrost area is still projected to approximately half by the end of the 21st century under the RCP8.5 scenario.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-25
    Description: There is a large amount of organic carbon stored in permafrost in the northern high latitudes, which may become vulnerable to microbial decomposition under future climate warming. In order to estimate this potential carbon-climate feedback it is necessary to correctly simulate the physical dynamics of permafrost within global Earth System Models (ESMs) and to determine the rate at which it will thaw. Additional new processes within JULES, the land surface scheme of the UK ESM (UKESM), include a representation of organic soils, moss and bedrock, and a modification to the snow scheme. The impact of a higher vertical soil resolution and deeper soil column is also considered. Evaluation against a large group of sites shows the annual cycle of soil temperatures is approximately 25 % too large in the standard JULES version, but this error is corrected by the model improvements, in particular by deeper soil, organic soils, moss and the modified snow scheme. Comparing with active layer monitoring sites shows that the active layer is on average just over 1 m too deep in the standard model version, and this bias is reduced by 70 cm in the improved version. Increasing the soil vertical resolution allows the full range of active layer depths to be simulated, where by contrast with a poorly resolved soil, at least 50% of the permafrost area has a maximum thaw depth at the centre of the bottom soil layer. Thus all the model modifications are seen to improve the permafrost simulations. Historical permafrost area corresponds fairly well to observations in all simulations, covering an area between 14–19 million km2. Simulations under two future climate scenarios show a reduced sensitivity of permafrost degradation to temperature, with the near-surface permafrost lost per degree of warming reduced from 1.5 million km2 °C−1 in the standard version of JULES to between 1.1 and 1.2 million km2 °C−1 in the new model version. However, the near-surface permafrost area is still projected to approximately half by the end of the 21st century under the RCP8.5 scenario.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-01-30
    Description: It is important to correctly simulate permafrost in global climate models, since the stored carbon represents the source of a potentially important climate feedback. This carbon feedback depends on the physical state of the permafrost. We have therefore included improved physical permafrost processes in JULES, which is the land-surface scheme used in the Hadley Centre climate models. The thermal and hydraulic properties of the soil were modified to account for the presence of organic matter, and the insulating effects of a surface layer of moss were added, allowing for fractional moss cover. We also simulate a higher-resolution soil column and deeper soil, and include an additional thermal column at the base of the soil to represent bedrock. In addition, the snow scheme was improved to allow it to run with arbitrarily thin layers. Point-site simulations at Samoylov Island, Siberia, show that the model is now able to simulate soil temperatures and thaw depth much closer to the observations. The root mean square error for the near-surface soil temperatures reduces by approximately 30%, and the active layer thickness is reduced from being over 1 m too deep to within 0.1 m of the observed active layer thickness. All of the model improvements contribute to improving the simulations, with organic matter having the single greatest impact. A new method is used to estimate active layer depth more accurately using the fraction of unfrozen water. Soil hydrology and snow are investigated further by holding the soil moisture fixed and adjusting the parameters to make the soil moisture and snow density match better with observations. The root mean square error in near-surface soil temperatures is reduced by a further 20% as a result.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-26
    Description: Thawing of permafrost in a warming climate is governed by a complex interplay of different processes, of which only conductive heat transfer is taken into account in most model studies. However, observations in many permafrost landscapes demonstrate that lateral and vertical movement of water can have a pronounced influence on the thaw trajectories, creating distinct landforms like thermokarst ponds and lakes even in areas where permafrost is otherwise thermally stable. Novel process parameterizations are required to include such phenomena in future projections of permafrost thaw and hereby triggered climatic feedbacks. In this study, we present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafrost processes. We document the model physics and employed parameterizations for the basis module CryoGrid 3, and compare model results with in-situ observations of surface energy balance, surface temperatures, and ground thermal regime from the Samoylov permafrost observatory in NE Siberia. The comparison suggests that CryoGrid 3 can not only model the evolution of the ground thermal regime in the last decade, but also consistently reproduce the chain of energy transfer processes from the atmosphere to the ground. In addition, we demonstrate a simple 1-D parameterization for thaw process in permafrost areas rich in ground ice, which can phenomenologically reproduce both formation of thermokarst ponds and subsidence of the ground following thawing of ice-rich subsurface layers. Long-term simulation from 1901–2100 driven by reanalysis data and climate model output demonstrate that the hydrological regime can both accelerate and delay permafrost thawing. If meltwater from thawed ice-rich layers can drain, the ground subsides while at the same time the formation of a talik is delayed. If the meltwater pools at the surface, a pond is formed which enhances heat transfer in the ground and leads to the formation of a talik. The model results suggest that the trajectories of future permafrost thaw are strongly influenced by the cryostratigraphy, as determined by the late quaternary history of a site.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-21
    Description: It is important to correctly simulate permafrost in global climate models, since the stored carbon represents the source of a potentially important climate feedback. This carbon feedback depends on the physical state of the permafrost. We have therefore included improved physical permafrost processes in JULES (Joint UK Land Environment Simulator), which is the land-surface scheme used in the Hadley Centre climate models. The thermal and hydraulic properties of the soil were modified to account for the presence of organic matter, and the insulating effects of a surface layer of moss were added, allowing for fractional moss cover. These processes are particularly relevant in permafrost zones. We also simulate a higher-resolution soil column and deeper soil, and include an additional thermal column at the base of the soil to represent bedrock. In addition, the snow scheme was improved to allow it to run with arbitrarily thin layers. Point-site simulations at Samoylov Island, Siberia, show that the model is now able to simulate soil temperatures and thaw depth much closer to the observations. The root mean square error for the near-surface soil temperatures reduces by approximately 30%, and the active layer thickness is reduced from being over 1 m too deep to within 0.1 m of the observed active layer thickness. All of the model improvements contribute to improving the simulations, with organic matter having the single greatest impact. A new method is used to estimate active layer depth more accurately using the fraction of unfrozen water. Soil hydrology and snow are investigated further by holding the soil moisture fixed and adjusting the parameters to make the soil moisture and snow density match better with observations. The root mean square error in near-surface soil temperatures is reduced by a further 20% as a result.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-08
    Description: Thawing of permafrost in a warming climate is governed by a complex interplay of different processes of which only conductive heat transfer is taken into account in most model studies. However, observations in many permafrost landscapes demonstrate that lateral and vertical movement of water can have a pronounced influence on the thaw trajectories, creating distinct landforms, such as thermokarst ponds and lakes, even in areas where permafrost is otherwise thermally stable. Novel process parameterizations are required to include such phenomena in future projections of permafrost thaw and subsequent climatic-triggered feedbacks. In this study, we present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafrost processes. We document the model physics and employed parameterizations for the basis module CryoGrid 3, and compare model results with in situ observations of surface energy balance, surface temperatures, and ground thermal regime from the Samoylov permafrost observatory in NE Siberia. The comparison suggests that CryoGrid 3 can not only model the evolution of the ground thermal regime in the last decade, but also consistently reproduce the chain of energy transfer processes from the atmosphere to the ground. In addition, we demonstrate a simple 1-D parameterization for thaw processes in permafrost areas rich in ground ice, which can phenomenologically reproduce both formation of thermokarst ponds and subsidence of the ground following thawing of ice-rich subsurface layers. Long-term simulation from 1901 to 2100 driven by reanalysis data and climate model output demonstrate that the hydrological regime can both accelerate and delay permafrost thawing. If meltwater from thawed ice-rich layers can drain, the ground subsides, as well as the formation of a talik, are delayed. If the meltwater pools at the surface, a pond is formed that enhances heat transfer in the ground and leads to the formation of a talik. The model results suggest that the trajectories of future permafrost thaw are strongly influenced by the cryostratigraphy, as determined by the late Quaternary history of a site.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-08-16
    Description: Thawing of permafrost is governed by a complex interplay of different processes, of which only conductive heat transfer is taken into account in most model studies. However, heat conduction alone can not account for the dynamical evolution of many permafrost landscapes, e.g. in areas rich in ground ice shaped by thermokarst ponds and lakes. Novel process parameterizations are required to include such phenomena in future projections of permafrost thaw and hereby triggered climatic feedbacks. Recently, we have demonstrated a physically-based parameterization for thaw process in ice-rich ground in the per-mafrost model CryoGrid 3, which can reproduce the formation of thermokarst ponds and subsidence of the ground following thawing of ice-rich subsurface layers. Long-term simulations for different subsurface stratigraphies in the Lena River Delta, Siberia, demonstrate that the hydrological regime can both accelerate and delay permafrost thawing. If meltwater from thawed ice-rich layers can drain, the ground subsides while at the same time the for-mation of a talik is delayed. If the meltwater pools at the surface, a pond is formed which enhances heat transfer in the ground and leads to the formation of a talik. The PERMANOR project funded by the Norwegian Research Council until 2019 will extend this work by inte- grating such small-scale processes in larger-scale Earth System Models (ESMs). For this purpose, the project will explore and develop statistical approaches, in particular tiling, to represent permafrost landscape dynamics on sub-grid scale. Ultimately, PERMANOR will conceptualize process understanding from in-situ studies to develop new model algorithms and pursue their implementation in a coupled ESM framework
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-08-16
    Description: Thawing of permafrost in a warming climate is governed by a complex interplay of different processes of which only conductive heat transfer is taken into account in most model studies. However, observations in many permafrost landscapes demonstrate that lateral and vertical movement of water can have a pronounced influence on the thaw trajectories, creating distinct landforms, such as thermokarst ponds and lakes, even in areas where permafrost is otherwise thermally stable. Novel process parameterizations are required to include such phenomena in future projections of permafrost thaw and subsequent climatic-triggered feedbacks. In this study, we present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafrost processes. We document the model physics and employed parameterizations for the basis module CryoGrid 3, and compare model results with in situ observations of surface energy balance, surface temperatures, and ground thermal regime from the Samoylov permafrost observatory in NE Siberia. The comparison suggests that CryoGrid 3 can not only model the evolution of the ground thermal regime in the last decade, but also consistently reproduce the chain of energy transfer processes from the atmosphere to the ground. In addition, we demonstrate a simple 1-D parameterization for thaw processes in permafrost areas rich in ground ice, which can phenomenologically reproduce both formation of thermokarst ponds and subsidence of the ground following thawing of ice-rich subsurface layers. Long-term simulation from 1901 to 2100 driven by reanalysis data and climate model output demonstrate that the hydrological regime can both accelerate and delay permafrost thawing. If meltwater from thawed ice-rich layers can drain, the ground subsides, as well as the formation of a talik, are delayed. If the meltwater pools at the surface, a pond is formed that enhances heat transfer in the ground and leads to the formation of a talik. The model results suggest that the trajectories of future permafrost thaw are strongly influenced by the cryostratigraphy, as determined by the late Quaternary history of a site.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-25
    Description: There is a large amount of organic carbon stored in permafrost in the northern high latitudes, which may become vulnerable to microbial decomposition under future climate warming. In order to estimate this potential carbon–climate feedback it is necessary to correctly simulate the physical dynamics of permafrost within global Earth system models (ESMs) and to determine the rate at which it will thaw. Additional new processes within JULES, the land-surface scheme of the UK ESM (UKESM), include a representation of organic soils, moss and bedrock and a modification to the snow scheme; the sensitivity of permafrost to these new developments is investigated in this study. The impact of a higher vertical soil resolution and deeper soil column is also considered. Evaluation against a large group of sites shows the annual cycle of soil temperatures is approximately 25 % too large in the standard JULES version, but this error is corrected by the model improvements, in particular by deeper soil, organic soils, moss and the modified snow scheme. A comparison with active layer monitoring sites shows that the active layer is on average just over 1 m too deep in the standard model version, and this bias is reduced by 70 cm in the improved version. Increasing the soil vertical resolution allows the full range of active layer depths to be simulated; by contrast, with a poorly resolved soil at least 50 % of the permafrost area has a maximum thaw depth at the centre of the bottom soil layer. Thus all the model modifications are seen to improve the permafrost simulations. Historical permafrost area corresponds fairly well to observations in all simulations, covering an area between 14 and 19 million km2. Simulations under two future climate scenarios show a reduced sensitivity of permafrost degradation to temperature, with the near-surface permafrost loss per degree of warming reduced from 1.5 million km2 °C−1 in the standard version of JULES to between 1.1 and 1.2 million km2 °C−1 in the new model version. However, the near-surface permafrost area is still projected to approximately half by the end of the 21st century under the RCP8.5 scenario.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...