ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Series available for loan
    Series available for loan
    Hamburg : Inst. für Geophysik
    Associated volumes
    Call number: S 98.0335(10) ; ZSP-180-C10
    In: Berichte aus dem Zentrum für Meeres- und Klimaforschung
    Type of Medium: Series available for loan
    Pages: II, 115, 26 S. : graph. Darst.
    ISSN: 0947-7144
    Series Statement: Berichte aus dem Zentrum für Meeres- und Klimaforschung : Reihe C, Geophysik 10
    Classification: A.2.1.
    Language: German
    Location: Lower compact magazine
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-18
    Description: Basalt weathering is one of many relevant processes balancing the global carbon cycle via land-ocean alkalinity fluxes. The CO2 consumption by weathering can be calculated using alkalinity and is often scaled with runoff and/or temperature. Here it is tested if information on the surface age distribution of a volcanic system is a useful proxy for changes in alkalinity production with time. A linear relationship between temperature normalized alkalinity fluxes and the Holocene area fraction of a volcanic field was identified, using information from 33 basalt volcanic fields, with an r2=0.91. This relationship is interpreted as an aging function and suggests that fluxes from Holocene areas are ~10 times higher than those from old inactive volcanic fields. However, the cause for the decrease with time is probably a combination of effects, including a decrease in alkalinity production from surface near material in the critical zone as well as a decline in hydrothermal activity and magmatic CO2 contribution. A comparison with global models suggests, that global alkalinity fluxes considering Holocene active basalt areas are ~70% higher than the average from these models imply. The contribution of Holocene areas to the global basalt alkalinity fluxes is however only ~6%, because identified, mapped Holocene basalt areas cover only ~1% of the existing basalt areas. The large trap basalt proportion on the global basalt areas today reduces the relevance of the aging effect. However, the aging effect might be a relevant process during periods of globally, intensive volcanic activity, which remains to be tested.
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: The spatial distribution of subsurface parameters such as permeability are increasingly relevant for regional to global climate, land surface, and hydrologic models that are integrating groundwater dynamics and interactions. Despite the large fraction of unconsolidated sediments on Earth's surface with a wide range of permeability values, current global, high‐resolution permeability maps distinguish solely fine‐grained and coarse‐grained unconsolidated sediments. Representative permeability values are derived for a wide variety of unconsolidated sediments and applied to a new global map of unconsolidated sediments to produce the first geologically constrained, two‐layer global map of shallower and deeper permeability. The new mean logarithmic permeability of the Earth's surface is −12.7 ± 1.7 m2 being 1 order of magnitude higher than that derived from previous maps, which is consistent with the dominance of the coarser sediments. The new data set will benefit a variety of scientific applications including the next generation of climate, land surface, and hydrology models at regional to global scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-28
    Description: Chemical weathering is an integral part of both the rock and carbon cycles and is being affected by changes in land use, particularly as a result of agricultural practices such as tilling, mineral fertilization, or liming to adjust soil pH. These human activities have already altered the chemical terrestrial cycles and land-ocean flux of major elements, although the extent remains difficult to quantify. When deployed on a grand scale, Enhanced Weathering (a form of mineral fertilization), the application of finely ground minerals over the land surface, could be used to remove CO2 from the atmosphere. The release of cations during the dissolution of such silicate minerals would convert dissolved CO2 to bicarbonate, increasing the alkalinity and pH of natural waters. Some products of mineral dissolution would precipitate in soils or taken up by ecosystems, but a significant portion would be transported to the coastal zone and the open ocean, where the increase in alkalinity would partially counteract “ocean acidification” associated with the current marked increase in atmospheric CO2. Other elements released during this mineral dissolution, like Si, P or K, could stimulate biological productivity, further helping to remove CO2 from the atmosphere. On land, the terrestrial carbon-pool would likely increase in response to Enhanced Weathering in areas where ecosystem growth rates are currently limited by one of the nutrients that would be released during mineral dissolution. In the ocean, the biological carbon pumps (which export organic matter and CaCO3 to the deep ocean) may be altered by the resulting influx of nutrients and alkalinity to the ocean. This review merges current interdisciplinary knowledge about Enhanced Weathering, the processes involved, and the applicability as well as some of the consequences and risks of applying the method.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-09-11
    Description: Carbonate rocks are a peculiarity of the Earth relative to other planets in the solar system. Large terrestrial areas are covered by carbonate lithology, which actively reacts with atmospheric/biospheric CO2. Although carbonate rocks represent a major component of the global carbon cycle, their intensity and rates of chemical weathering have been overlooked. In this study, we examine three global databases of rivers and springs draining carbonate regions under various climate conditions (from −15 °C to +30 °C). Using Ca2+ + Mg2+ concentrations as a proxy, we show that carbonate weathering intensity depends upon land temperature according to a boomerang-type relationship, with maximum dissolution between 10 and 15 °C. We show that this pattern is primarily controlled by thermodynamics if we assume that the partial pressure of CO2 in soil (pCO2) increases from atmospheric-like levels under cold climate up to 100 times the present day atmospheric concentration under hot climate. The link between soil pCO2 and land temperature is still not very well known, but by using three different published predictive soil pCO2 vs. T curves, we show that the boomerang shape can be, at least qualitatively, reproduced. This study shows that more data on carbonate weathering in various environments are needed to predict with more accuracy the role that carbonate lithologies and overlying ecosystems could play in the Anthropocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  Proceedings of the National Academy of Sciences of the United States of America (PNAS), 114 (33). pp. 8716-8721.
    Publication Date: 2019-02-01
    Description: Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO2, we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean–atmosphere CO2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O2. Future work on glaciation–weathering–carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Collins, James A; Govin, Aline; Mulitza, Stefan; Heslop, David; Zabel, Matthias; Hartmann, Jens; Röhl, Ursula; Wefer, Gerold (2013): Abrupt shifts of the Sahara–Sahel boundary during Heinrich stadials. Climate of the Past, 9(3), 1181-1191, https://doi.org/10.5194/cp-9-1181-2013
    Publication Date: 2019-06-07
    Description: Relict dune fields that are found as far south as 14° N in the modern-day African Sahel are testament to equatorward expansions of the Sahara desert during the Late Pleistocene. However, the discontinuous nature of dune records means that abrupt millennial-timescale climate events are not always resolved. High-resolution marine core studies have identified Heinrich stadials as the dustiest periods of the last glacial in West Africa although the spatial evolution of dust export on millennial timescales has so far not been investigated. We use the major-element composition of four high-resolution marine sediment cores to reconstruct the spatial extent of Saharan-dust versus river-sediment input to the continental margin from West Africa over the last 60 ka. This allows us to map the position of the sediment composition corresponding to the Sahara-Sahel boundary. Our records indicate that the Sahara-Sahel boundary reached its most southerly position (13° N) during Heinrich stadials and hence suggest that these were the periods when the sand dunes formed at 14° N on the continent. Heinrich stadials are associated with cold North Atlantic sea surface temperatures which appear to have triggered abrupt increases of aridity and wind strength in the Sahel. Our study illustrates the influence of the Atlantic meridional overturning circulation on the position of the Sahara-Sahel boundary and on global atmospheric dust loading.
    Type: Dataset
    Format: application/zip, 8 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-07
    Type: Dataset
    Format: text/tab-separated-values, 348 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-07
    Type: Dataset
    Format: text/tab-separated-values, 7002 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-07
    Type: Dataset
    Format: text/tab-separated-values, 3303 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...