ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Proceed order?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: The Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer (GCMS) determined the composition of the Titan atmosphere from ~140km altitude to the surface. After landing, it returned composition data of gases evaporated from the surface. Height profiles of molecular nitrogen (N2), methane (CH4) and molecular hydrogen (H2) were determined. Traces were detected on the surface of evaporating methane, ethane (C2H6), acetylene (C2H2), cyanogen (C2N2) and carbon dioxide (CO2). The methane data showed evidence that methane precipitation occurred recently. The methane mole fraction was (1.48+/-0.09) x 10(exp -2) in the lower stratosphere (139.8 km to 75.5 km) and (5.65+/-0.18) x 10(exp -2) near the surface (6.7 km to the surface). The molecular hydrogen mole fraction was (1.01+/-0.16) x 10(exp -3) in the atmosphere and (9.90+/-0.17) x 10(exp -4) on the surface. Isotope ratios were 167.7+/-0.6 for N-14/N-15 in molecular nitrogen, 91.1+/-1.4 for C-12/C-13 in methane and (1.35+/-0.30) x 10(exp -4) for D/H in molecular hydrogen. The mole fractions of Ar-36 and radiogenic Ar-40 are (2.1+/-0.8) x 10(exp -7) and (3.39 +/-0.12) x 10(exp -5) respectively. Ne-22 has been tentatively identified at a mole fraction of (2.8+/-2.1) x 10(exp -7) Krypton and xenon were below the detection threshold of 1 x 10(exp -8) mole fraction. Science data were not retrieved from the gas chromatograph subsystem as the abundance of the organic trace gases in the atmosphere and on the ground did not reach the detection threshold. Results previously published from the GCMS experiment are superseded by this publication.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-02
    Description: The next landed missions to Mars, such as the planned Mars Science Laboratory and ExoMars, will require sample analysis capabilities refined well beyond what has been flown to date. A key science objective driving this requirement is the determination of the carbon inventory of Mars, and particularly the detection of organic compounds. While the gas chromatograph mass spectrometers (GC/MS) on the Viking landers did not detect any indigenous organics in near surface fines, it is possible that these measurements were not representative of Mars on the whole. That is, those compounds to which the GC/MS was sensitive would likely not have survived the strong oxidative decomposition in the regolith at the landing sites in question. The near surface fines could very well contain a significant quantity of refractory compounds that would not have been volatilized in the sample ovens on Viking. It is also possible that volatile organics exist on Mars in sedimentary, subsurface, or polar niches.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-02
    Description: The Huygens Probe of the Cassini Huygens Mission entered the atmosphere of the moon Titan on January 14, 2005. The GCMS was part of the instrument complement on the probe to measure in situ the chemical composition of the atmosphere during the probe descent and to support the Aerosol Collector Pyrolyzer (ACP) experiment by serving as detector for the pyrolization products. The GCMS collected data from an altitude of 146 km to ground impact for a time interval of 2hours and 37minutes. The Probe and the GCMS survived the ground impact and collected data for 1hour and 9 minutes on the surface in the near surface environment until signal loss by the orbiter. The major constituents of the lower atmosphere were found to be N2 and CH4. The methane-mixing ratio was found to increase below the turbopause, about 35 km altitude, monotonically toward the surface to levels near saturation. After surface impact a steep increase of the mixing ratio was observed suggesting evaporation of surface condensed methane due to heating by the GCMS sample inlet heater. Other constituents were found to be in very low concentrations, below ppm levels. The presence of Argon 40 was confirmed. The results for the other noble gases are still being evaluated. Other hydrocarbons and nitriles were also observed and quantitative evaluation is in progress. Preliminary ratios for the major carbon and nitrogen isotopes were computed from methane and molecular nitrogen measurements. The instrument collected 5634 mass spectra during descent and 2692 spectra on the ground over a range of m/z from 2 to 141. Eight gas chromatograph samples were taken during the descent and two on the ground.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 14; LPI-Contrib-1234-Pt-14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Galileo Probe Mass Spectrometer (GPMS) is a Probe instrument designed to measure the chemical and isotopic composition including vertical variations of the constituents in the atmosphere of Jupiter. The measurement will be performed by in situ sampling of the ambient atmosphere in the pressure range from approximately 150 mbar to 20 bar. In addition batch sampling will be performed for noble gas composition measurement and isotopic ratio determination and for sensitivity enhancement of non-reactive trace gases. The instrument consists of a gas sampling system which is connected to a quadrupole mass analyzer for molecular weight analysis. In addition two sample enrichment cells and one noble gas analysis cell are part of the sampling system. The mass range of the quadrupole analyzer is from 2 amu to 150 amu. The maximum dynamic range is 108. The detector threshold ranges from 10 ppmv for H2O to 1 ppbv for Kr and Xe. It is dependent on instrument background and ambient gas composition because of spectral interference. The threshold values are lowered through sample enrichment by a factor of 100 to 500 for stable hydrocarbons and by a factor of 10 for noble gases. The gas sampling system and the mass analyzer are sealed and evacuated until the measurement sequence is initiated after the Probe enters into the atmosphere of Jupiter. The instrument weighs 13.2 kg and the average power consumption is 13 W. The instrument follows a sampling sequence of 8192 steps and a sampling rate of two steps per second. The measurement period lasts appropriately 60 min through the nominal pressure and altitude range.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-10-26
    Description: Flight instrumentation research in mass spectrometers on rockets and satellites
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for 3He/4He, D/H, 13C/12C, 20Ne/22Ne, 38Ar/36Ar and for isotopes of both Kr and Xe.
    Keywords: Meteorology and Climatology
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 21; 11; 1455-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-16
    Description: Horizontal He distribution in upper atmosphere from OGO 6 mass spectrometric data normalization for altitude by Jacchia model atmosphere
    Keywords: GEOPHYSICS
    Type: NSSDC-ID-69-051A-04-PM , ; BROTECHNIKA, NO. 1(
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: The chemical and isotopic composition of the Jupiter atmosphere's constituents, including their vertical variations, will be measured by the Galileo Probe Mass Spectrometer instrument through in situ sampling; batch sampling will also be undertaken for noble gas composition and isotopic ratio determinations. The instrument's gas-sampling system is connected to a quadrupole mass analyzer for molecular weight analysis. Threshold values are lowered through sample enrichment by a factor of 100-500 for stable hydrocarbons and by a factor of 10 for noble gases. The instrument follows a sampling sequence of 8192 steps, at a rate of 2 steps/sec.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: Space Science Reviews (ISSN 0038-6308); 60; 1-4,
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: The composition of the jovian atmosphere from 0.5 to 21 bars along the descent trajectory was determined by a quadrupole mass spectrometer on the Galileo probe. The mixing ratio of He (helium) to H2 (hydrogen), 0.156, is close to the solar ratio. The abundances of methane, water, argon, neon, and hydrogen sulfide were measured; krypton and xenon were detected. As measured in the jovian atmosphere, the amount of carbon is 2.9 times the solar abundance relative to H2, the amount of sulfur is greater than the solar abundance, and the amount of oxygen is much less than the solar abundance. The neon abundance compared with that of hydrogen is about an order of magnitude less than the solar abundance. Isotopic ratios of carbon and the noble gases are consistent with solar values. The measured ratio of deuterium to hydrogen (D/H) of (5 +/- 2) x 10(-5) indicates that this ratio is greater in solar-system hydrogen than in local interstellar hydrogen, and the 3He/4He ratio of (1.1 +/- 0.2) x 10(-4) provides a new value for protosolar (solar nebula) helium isotopes. Together, the D/H and 3He/4He ratios are consistent with conversion in the sun of protosolar deuterium to present-day 3He.
    Keywords: Meteorology and Climatology
    Type: Science (ISSN 0036-8075); Volume 272; 5263; 846-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...