ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-07
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 229–245, doi:10.1175/JPO-D-12-0218.1.
    Description: Data from a mooring deployed at the edge of the East Greenland shelf south of Denmark Strait from September 2007 to October 2008 are analyzed to investigate the processes by which dense water is transferred off the shelf. It is found that water denser than 27.7 kg m−3—as dense as water previously attributed to the adjacent East Greenland Spill Jet—resides near the bottom of the shelf for most of the year with no discernible seasonality. The mean velocity in the central part of the water column is directed along the isobaths, while the deep flow is bottom intensified and veers offshore. Two mechanisms for driving dense spilling events are investigated, one due to offshore forcing and the other associated with wind forcing. Denmark Strait cyclones propagating southward along the continental slope are shown to drive off-shelf flow at their leading edges and are responsible for much of the triggering of individual spilling events. Northerly barrier winds also force spilling. Local winds generate an Ekman downwelling cell. Nonlocal winds also excite spilling, which is hypothesized to be the result of southward-propagating coastally trapped waves, although definitive confirmation is still required. The combined effect of the eddies and barrier winds results in the strongest spilling events, while in the absence of winds a train of eddies causes enhanced spilling.
    Description: The authors wish to thank Paula Fratantoni, Frank Bahr, and Dan Torres for processing the mooring data. The mooring array was capably deployed by the crew of the R/V Arni Fridriksson and recovered by the crew of the R/V Knorr. We thank Hedinn Valdimarsson for his assistance in the field work. Ken Brink provided valuable insights regarding the dynamics of shelf waves. Funding for the study was provided by National Science Foundation Grant OCE-0722694, the Arctic Research Initiative of the Woods Hole Oceanographic Institution. We also wish to thank the Natural Environment Research Council for Ph.D. studentship funding, and the University of East Anglia’s Roberts Fund and Royal Meteorological Society for supporting travel for collaboration.
    Description: 2014-07-01
    Keywords: Geographic location/entity ; Continental shelf/slope ; Circulation/ Dynamics ; Meridional overturning circulation ; Upwelling/downwelling ; Atm/Ocean Structure/ Phenomena ; Eddies ; Extreme events ; Physical Meteorology and Climatology ; Air-sea interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-11-28
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2631-2646, doi:10.1175/JPO-D-17-0062.1.
    Description: Data from a mooring array deployed north of Denmark Strait from September 2011 to August 2012 are used to investigate the structure and variability of the shelfbreak East Greenland Current (EGC). The shelfbreak EGC is a surface-intensified current situated just offshore of the east Greenland shelf break flowing southward through Denmark Strait. This study identified two dominant spatial modes of variability within the current: a pulsing mode and a meandering mode, both of which were most pronounced in fall and winter. A particularly energetic event in November 2011 was related to a reversal of the current for nearly a month. In addition to the seasonal signal, the current was associated with periods of enhanced eddy kinetic energy and increased variability on shorter time scales. The data indicate that the current is, for the most part, barotropically stable but subject to baroclinic instability from September to March. By contrast, in summer the current is mainly confined to the shelf break with decreased eddy kinetic energy and minimal baroclinic conversion. No other region of the Nordic Seas displays higher levels of eddy kinetic energy than the shelfbreak EGC north of Denmark Strait during fall. This appears to be due to the large velocity variability on mesoscale time scales generated by the instabilities. The mesoscale variability documented here may be a source of the variability observed at the Denmark Strait sill.
    Description: Support for this work was provided by the Norwegian Research Council under Grant Agreement 231647 (LH and KV) and the Bergen Research Foundation under Grant BFS2016REK01 (KV). Additional funding was provided by the National Science Foundation under Grants OCE-0959381 and OCE-1558742 (RP).
    Keywords: Ocean ; Arctic ; Boundary currents ; Currents ; Stability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-04
    Description: Author Posting. © Geological Survey of Denmark and Greenland, 2014. This article is posted here by permission of Geological Survey of Denmark and Greenland for personal use, not for redistribution. The definitive version was published in Geological Survey of Denmark and Greenland Bulletin 31 (2014): 79-82.
    Description: During the past decades, the Greenland ice sheet has experienced a marked increase in mass loss resulting in an increased contribution to global sea-level rise. The three largest outlet glaciers in Greenland have increased their discharge, accelerated, thinned and retreated between 1996 and 2005. After 2005 most of them have slowed down again although not to previous levels. Geodetic observations suggest that rapid increase in mass loss from the north-western part of the ice sheet occurred during 2005–2010 (Kjeldsen et al. 2013). Warming of the subsurface water masses off Greenland may have triggered the acceleration of outlet glaciers from the ice sheet (Straneo & Heimbach 2013). The North Atlantic subpolar gyre, which transports water to South-East and West Greenland via the warm Irminger Current, warmed in the mid-1990s. Increased inflow of warm subpolar waters likely led to increased submarine melting of tidewater glaciers. Climate, glacier configuration and fjord bathymetry play fundamental roles for outlet glacier dynamics and thus knowledge of these parameters is warranted. In particular, the bathymetry of a fjord gives important information about the exchange between fjord waters close to marine-terminating glaciers and the shelf and ocean. However, only sparse bathymetric data are available for the majority of fjords in Greenland. The International bathymetry chart for the Arctic Ocean (IBCAO) does not provide adequate data for the fjords and gives the impression that water depths in fjords are typically 〈200 m. Here we present the first detailed bathymetric data from Upernavik Isfjord in North-West Greenland, which were obtained during a cruise led by the Geological Survey of Denmark and Greenland in August 2013. The purpose of the cruise was to retrieve sediment cores, collect hydrographic data and map the bathymetry of the fjord. In this paper, we also estimate retreat rates of the Upernavik Isstrøm since 1849 and evaluate them in the context of climate variability, glacier setting and fjord bathymetry.
    Description: The ‘Upernavik Glacier Project’ is funded by Geocenter Danmark.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-12-23
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 8838–8857, doi:10.1002/2014JC010134.
    Description: We present a year-round assessment of the hydrographic variability within the East Greenland Coastal Current on the Greenland shelf from five synoptic crossings and 4 years of moored hydrographic data. From the five synoptic sections the current is observed as a robust, surface intensified flow with a total volume transport of 0.66 ± 0.18 Sv and a freshwater transport of 42 ± 12 mSv. The moorings showed heretofore unobserved variability in the abundance of Polar and Atlantic water masses in the current on synoptic scales. This is exhibited as large vertical displacement of isotherms (often greater than 100 m). Seasonally, the current is hemmed into the coast during the fall by a full depth Atlantic Water layer that has penetrated onto the inner shelf. The Polar Water layer in the current then thickens through the winter and spring seasons increasing the freshwater content in the current; the timing implies that this is probably driven by the seasonally varying export of freshwater from the Arctic and not the local runoff from Greenland. The measured synoptic variability is enhanced during the winter and spring period due to a lower halocline and a concurrent enhancement in the along-coast wind speed. The local winds force much of the high-frequency variability in a manner consistent with downwelling, but variability distinct from downwelling is also visible.
    Description: This work was funded by the National Science Foundation grant OCE-1130008, NASA grant NNX13AK88G, and the Ocean and Climate Change Institute at the Woods Hole Oceanographic Institution.
    Description: 2015-06-23
    Keywords: Greenland ; Freshwater ; Coastal current ; Fjord
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-04
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 3011–3018, doi:10.1002/2015GL063550.
    Description: Southern Greenland is characterized by a number of low-level high wind speed weather systems that are the result of topographic flow distortion. These systems include barrier winds and katabatic flow that occur along its southeast coast. Global atmospheric reanalyses have proven to be important tools in furthering our understanding of these orographic winds and their role in the climate system. However, there is evidence that the mesoscale characteristics of these systems may be missed in these global products. Here we show that the Arctic System Reanalysis, a higher-resolution regional reanalysis, is able to capture mesoscale features of barrier winds and katabatic flow that are missed or underrepresented in ERA-I, a leading modern global reanalysis. This suggests that our understanding of the impact of these wind systems on the coupled-climate system can be enhanced through the use of higher-resolution regional reanalyses or model data.
    Description: 2015-10-19
    Keywords: Mesoscale meteorology ; Greenland ; Flow distortion ; Barrier winds ; Katabatic flow ; Air-sea-ice interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-04
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Atmospheres 120 (2015): 3199–3208, doi:10.1002/2014JD022584.
    Description: We present the first continuous in situ atmospheric observations from the central Iceland Sea collected from a meteorological buoy deployed for a 2 year period between 23 November 2007 and 21 August 2009. We use these observations to evaluate the ERA-Interim reanalysis product and demonstrate that it represented low-level meteorological fields and surface turbulent fluxes in this region very well. The buoy observations showed that moderate to strong winds were common from any direction, while wind speeds below 5 ms−1 were relatively rare. The observed low-level air temperature and surface heat fluxes were related to the wind direction with cold-air outbreaks most common from the northwest. Mean wintertime turbulent heat fluxes were modest (〈60 Wm−2), but the range was substantial. High heat flux events, greater than 200 Wm−2, typically occurred every 1–2 weeks in the winter, with each event lasting on average 2.5 days with an average total turbulent heat flux of ∼200 Wm−2 out of the ocean. The most pronounced high heat flux events over the central Iceland Sea were associated with cold-air outbreaks from the north and west forced by a deep Lofoten Low over the Norwegian Sea.
    Description: This work was funded in part by the Ocean and Climate Change Institute at the Woods Hole Oceanographic Institution and NSF grant OCE-1433958.
    Description: 2015-10-24
    Keywords: Iceland Sea ; Met buoy ; Heat flux ; Nordic Seas ; Cold-air outbreak
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-10-04
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 2830–2846, doi:10.1002/2016JC012158.
    Description: The upstream sources and pathways of the Denmark Strait Overflow Water and their variability have been investigated using a high-resolution model hindcast. This global simulation covers the period from 1948 to 2009 and uses a fine model mesh (1/20°) to resolve mesoscale features and the complex current structure north of Iceland explicitly. The three sources of the Denmark Strait Overflow, the shelfbreak East Greenland Current (EGC), the separated EGC, and the North Icelandic Jet, have been analyzed using Eulerian and Lagrangian diagnostics. The shelfbreak EGC contributes the largest fraction in terms of volume and freshwater transport to the Denmark Strait Overflow and is the main driver of the overflow variability. The North Icelandic Jet contributes the densest water to the Denmark Strait Overflow and shows only small temporal transport variations. During summer, the net volume and freshwater transports to the south are reduced. On interannual time scales, these transports are highly correlated with the large-scale wind stress curl around Iceland and, to some extent, influenced by the North Atlantic Oscillation, with enhanced southward transports during positive phases. The Lagrangian trajectories support the existence of a hypothesized overturning loop along the shelfbreak north of Iceland, where water carried by the North Icelandic Irminger Current is transformed and feeds the North Icelandic Jet. Monitoring these two currents and the region north of the Iceland shelfbreak could provide the potential to track long-term changes in the Denmark Strait Overflow and thus also the AMOC.
    Description: Norwegian Research Council Grant Number: 231647
    Description: 2017-10-04
    Keywords: North Atlantic ; Denmark Strait ; Overflow ; Transport variability ; Overturning
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Sears Foundation for Marine Research
    Publication Date: 2018-11-29
    Description: Author Posting. © The Authors, 2018. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 76 (2018): 47-62, doi:10.1357/002224018824845910.
    Description: We describe the high-frequency variability in the North Icelandic Jet (NIJ) on the Iceland Slope using data from the densely instrumented Kögur mooring array deployed upstream of the Denmark Strait sill from September 2011 to July 2012. Significant sub-8-day variability is ubiquitous in all moorings from the Iceland slope with a dominant period of 3.6 days. We attribute this variability to topographic Rossby waves on the Iceland slope with a wavelength of 62 ± 3 km and a phase velocity of 17.3 ± 0.8 km/day−1 directed downslope (−9◦ relative to true-north). We test the theoretical dispersion relation for these waves against our observations and find good agreement between the predicted and measured direction of phase propagation.We additionally calculate a theoretical group velocity of 36 km day−1 directed almost directly up-slope (106◦ relative to true-north) that agrees well with the propagation speed and direction of observed energy pulses. We use an inverse wave tracing model to show that this wave energy is generated locally, offshore of the array, and does not emanate from the upstream or downstream directions along the Iceland slope. It is hypothesized that either the meandering Separated East Greenland Current located seaward of the NIJ or intermittent aspiration of dense water into the Denmark Strait Overflow are the drivers of the topographic waves.
    Description: This work was supported by National Science Foundation grants OCE-1433958 (BH), OCE-0959381 (BH and RP) and OCE-1558742 (RP).
    Keywords: Topographic waves ; Denmark Strait ; AMOC ; North Icelandic Jet
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-30
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 93-109, doi:10.1002/2016JC012106.
    Description: Liquid freshwater transports of the shelfbreak East Greenland Current (EGC) and the separated EGC are determined from mooring records from the Kögur section north of Denmark Strait between August 2011 and July 2012. The 11 month mean freshwater transport (FWT), relative to a salinity of 34.8, was 65 ± 11 mSv to the south. Approximately 70% of this was associated with the shelfbreak EGC and the remaining 30% with the separated EGC. Very large southward FWT ranging from 160 mSv to 120 mSv was observed from September to mid-October 2011 and was foremost due to anomalously low upper-layer salinities. The FWT may, however, be underestimated by approximately 5 mSv due to sampling biases in the upper ocean. The FWT on the Greenland shelf was estimated using additional inshore moorings deployed from 2012 to 2014. While the annual mean ranged from nearly zero during the first year to 18 mSv to the south during the second year, synoptically the FWT on the shelf can be significant. Furthermore, an anomalous event in autumn 2011 caused the shelfbreak EGC to reverse, leading to a large reduction in FWT. This reversed circulation was due to the passage of a large, 100 km wide anticyclone originating upstream from the shelfbreak. The late summer FWT of −131 mSv is 150% larger than earlier estimates based on sections in the late-1990s and early-2000s. This increase is likely the result of enhanced freshwater flux from the Arctic Ocean to the Nordic Seas during the early 2010s.
    Description: European Union Seventh Framework Programme Grant Numbers: (FP7 2007–2013), 308299; US National Science Foundation Grant Number: OCE-0959381
    Description: 2017-07-10
    Keywords: Freshwater ; East Greenland Current ; Mooring observations ; Time series
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-30
    Description: © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 112 (2016): 94-112, doi:10.1016/j.dsr.2016.02.007.
    Description: We present the first results from a densely instrumented mooring array upstream of the Denmark Strait sill, extending from the Iceland shelfbreak to the Greenland shelf. The array was deployed from September 2011 to July 2012, and captured the vast majority of overflow water denser than 27.8 kgm-3 approaching the sill. The mean transport of overflow water over the length of the deployment was 3.54 ± 0.16 Sv. Of this, 0.58 Sv originated from below sill depth, revealing that aspiration takes place in Denmark Strait. We confirm the presence of two main sources of overflow water: one approaching the sill in the East Greenland Current and the other via the North Icelandic Jet. Using an objective technique based on the hydrographic properties of the water, the transports of these two sources are found to be 2.54 ± 0.17 Sv and 1.00 ± 0.17 Sv, respectively. We further partition the East Greenland Current source into that carried by the shelfbreak jet (1.50 ± 0.16 Sv) versus that transported by a separated branch of the current on the Iceland slope (1.04 ± 0.15 Sv). Over the course of the year the total overflow transport is more consistent than the transport in either branch; compensation takes place among the pathways that maintains a stable total overflow transport. This is especially true for the two East Greenland Current branches whose transports vary out of phase with each other on weekly and longer time scales. We argue that wind forcing plays a role in this partitioning.
    Description: The mooring and analysis work was supported by NSF OCE research grants OCE-0959381 and OCE-1433958, by the European Union 7th Framework Programme (FP7 2007-2013) under grant agreement n. 308299 NACLIM, and and by the Research Council of Norway through the Fram Centre Flaggship project 6606-299.
    Description: 2017-03-24
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...