ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-01
    Description: The Summer East Atlantic (SEA) mode is the second dominant mode of summer low-frequency variability in the Euro-Atlantic region. Using reanalysis data, we show that SEA-related circulation anomalies significantly influence temperatures and precipitation over Europe. We present evidence that part of the interannual SEA variability is forced by diabatic heating anomalies of opposing signs in the tropical Pacific and Caribbean that induce an extratropical Rossby wave train. This precipitation dipole is related to SST anomalies characteristic of the developing ENSO phases. Seasonal hindcast experiments forced with observed sea surface temperatures (SST) exhibit skill at capturing the interannual SEA variability corroborating the proposed mechanism and highlighting the possibility for improved prediction of boreal summer variability. Our results indicate that tropical forcing of the SEA likely played a role in the dynamics of the 2015 European heat wave.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-19
    Description: Experiments using atmosphere-only, as well as coupled forecast models, in which parts of the model atmosphere are constrained towards reanalysis products by relaxation are described. Such experiments have proved useful for determining remote influences, e.g. from the tropics or from the stratosphere, potentially useful for seasonal forecasting boreal winter over Europe. Such techniques can also be used for diagnosing remote influences important in the dynamics of a particular season, a good example being the extreme winter of 1962/63. An example is also given for the boreal summer East Atlantic pattern in which relaxation experiments fail to capture the appropriate influence from the tropics. Possible reasons for this will be given.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-30
    Description: The phase and amplitude of the North Atlantic Oscillation (NAO) are influenced by numerous factors, including sea-surface temperature (SST) anomalies in both the Tropics and extratropics and stratospheric extreme events like stratospheric sudden warmings (SSWs). Analyzing seasonal forecast experiments, which cover the winters from 1979/1980–2013/2014, with the European Centre for Medium-Range Weather Forecast model, we investigate how these factors affect NAO variability and predictability. Building on the idea that tropical influence might happen via the stratosphere, special emphasis is placed on the role of major SSWs. Relaxation experiments are performed, where different regions of the atmosphere are relaxed towards ERA-Interim to obtain perfect forecasts in those regions. By comparing experiments with relaxation in the tropical atmosphere, performed with an atmosphere-only model on the one hand and a coupled atmosphere–ocean model version on the other, the importance of extratropical atmosphere–ocean interaction is addressed. Interannual variability of the NAO is best reproduced when perfect knowledge of the Northern Hemisphere (NH) stratosphere is available, together with perfect knowledge of SSTs and sea ice, in which case 64% of the variance of winter mean NAO is projected to be accounted for with a forecast ensemble of infinite size. The coupled experiment shows a strong bias in the stratospheric polar-night jet (PNJ), which might be associated with a drift in the modelled SSTs resembling the North Atlantic cold bias and an underestimation of blockings in the North Atlantic/Europe sector. Consistent with the stronger PNJ, the lowest frequency of major SSWs is found in this experiment. However, after removing the bias statistically, a perfect forecast of the tropical atmosphere and allowing two-way atmosphere–ocean coupling in the extratropics seem to be key ingredients for successful SSW predictions. In combination with SSW occurrence, a clear shift of the predicted NAO towards lower values occurs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-15
    Description: We examine the interannual variability of the seasonal mean atmospheric circulation in the Southern Hemisphere during austral winter. The three major modes are identified by rotated empirical orthogonal function (REOF) analysis. As expected, REOF1 is associated with the Southern Annular Mode which is dominated by internal atmospheric dynamics. REOF2 displays a wave train, linked to the western North Pacific monsoon and the Pacific-Japan pattern in East Asia in the same season; REOF3 resembles the Pacific-South American pattern. Externally forced variability strongly projects on both REOF2 and REOF3 so that in the ensemble mean, an atmospheric model with prescribed observed sea surface temperature captures considerable parts of the time evolution of REOF2 (50%) and REOF3 (25%), suggesting a potential predictability for the two modes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU / Wiley
    In:  Journal of Geophysical Research: Atmospheres, 118 (18). 10,464-10,474.
    Publication Date: 2018-02-06
    Description: The consequences of different quasi‒biennial oscillation (QBO) nudging widths on stratospheric dynamics and chemistry are analyzed by comparing two model simulations with the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM) where the width of the QBO is varied between 22° and 8.5° north and south. The sensitivity to the nudging width is strongest in Northern Hemisphere (NH) winter where the Holton‒Tan effect in the polar stratosphere, i.e., stronger zonal mean winds during QBO west phases, is enhanced for the wider compared to the narrower nudging case. The differences between QBO west and east conditions for the two model experiments can be explained with differences in wave propagation, wave‒mean flow interaction, and the residual circulation. In the wider nudging case, a divergence anomaly in the midlatitude upper stratosphere/lower mesosphere occurs together with an equatorward anomaly of the residual circulation. This seems to result in a strengthening of the meridional temperature gradient and hence a significant strengthening of the polar night jet (PNJ). In the narrower nudging case, these circulation changes are weaker and not statistically significant, consistent with a weaker and less significant impact on the PNJ. Chemical tracers like ozone, water vapor, and methane react accordingly. From a comparison of westerly minus easterly phase composite differences in the model to reanalysis and satellite data, we conclude that the standard WACCM configuration (QBO22) generates more realistic QBO effects in stratospheric dynamics and chemistry during NH winter. Our study also confirms the importance of the secondary mean meridional circulation associated with the QBO for the Holton‒Tan effect.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  [Poster] In: SPARC 2014 General Assembly, 12.-17.01.2014, Queenstown, New Zealand .
    Publication Date: 2014-08-11
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-12
    Description: Quasi-decadal variability in solar irradiance has been suggested to exert a substantial effect on Earth’s regional climate. In the North Atlantic sector, the 11-year solar signal has been proposed to project onto a pattern resembling the North Atlantic Oscillation (NAO), with a lag of a few years due to ocean-atmosphere interactions. The solar/NAO relationship is, however, highly misrepresented in climate model simulations with realistic observed forcings. In addition, its detection is particularly complicated since NAO quasi-decadal fluctuations can be intrinsically generated by the coupled ocean-atmosphere system. Here we compare two multi-decadal ocean-atmosphere chemistry-climate simulations with and without solar forcing variability. While the experiment including solar variability simulates a 1–2-year lagged solar/NAO relationship, comparison of both experiments suggests that the 11-year solar cycle synchronizes quasi-decadal NAO variability intrinsic to the model. The synchronization is consistent with the downward propagation of the solar signal from the stratosphere to the surface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  [Poster] In: EGU General Assembly 2018, 08.-13.04.2018, Vienna, Austria .
    Publication Date: 2018-11-19
    Description: The Summer East Atlantic (SEA) mode is the second dominant mode of summer low-frequency variability in the Euro-Atlantic region. Using reanalysis data, we show that SEA-related circulation anomalies significantly influence temperatures and precipitation over Europe. We present evidence that part of the interannual SEA variability is forced by diabatic heating anomalies of opposing signs in the tropical Pacific and Caribbean that induce an extratropical Rossby wave train. This precipitation dipole is related to SST anomalies characteristic of the developing El Niño–Southern Oscillation phases. Seasonal hindcast experiments forced with observed sea surface temperatures (SSTs) exhibit skill at capturing the interannual SEA variability corroborating the proposed mechanism and highlighting the possibility for improved prediction of boreal summer variability. Our results indicate that tropical forcing of the SEA likely played a role in the dynamics of the 2015 European heat wave.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Poster] In: 3. SPARC / Dynamical Variability (DynVar) Workshop in Reading, England, UK & 1st SPARC Stratospheric Network for the Assessment of Predictability (SNAP) Workshop, 22.-26.04.2013, Reading, UK .
    Publication Date: 2013-12-18
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Poster] In: EGU General Assembly 2013, 07.-12.04.2013, Vienna, Austria .
    Publication Date: 2013-12-18
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...