ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: AWI A4-23-95497
    Description / Table of Contents: Extreme weather and climate events are one of the greatest dangers for present-day society. Therefore, it is important to provide reliable statements on what changes in extreme events can be expected along with future global climate change. However, the projected overall response to future climate change is generally a result of a complex interplay between individual physical mechanisms originated within the different climate subsystems. Hence, a profound understanding of these individual contributions is required in order to provide meaningful assessments of future changes in extreme events. One aspect of climate change is the recently observed phenomenon of Arctic Amplification and the related dramatic Arctic sea ice decline, which is expected to continue over the next decades. The question to what extent Arctic sea ice loss is able to affect atmospheric dynamics and extreme events over mid-latitudes has received a lot of attention over recent years and still remains a highly debated topic. In this respect, the objective of ...
    Type of Medium: Dissertations
    Pages: xi, 126 Seiten , Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2023 , CONTENTS 1 SCIENTIFIC BACKGROUND AND RESEARCH QUESTIONS 1.1 Extreme events and attribution 1.2 Arctic climate change and mid-latitude linkages 1.3 Research questions 2 FOUNDATIONS 2.1 Atmospheric basics 2.1.1 Governing equations 2.1.2 Zonal wind and temperature profiles 2.1.3 Atmospheric waves and instabilities 2.1.4 Large-scale variability patterns and blocking 2.2 Atmospheric circulation regimes 2.2.1 Dynamical concepts 2.2.2 Regime computation 2.2.3 Regime number 2.3 Arctic climate change 2.3.1 Recent trends in Arctic sea ice and temperatures 2.3.2 Surface fluxes and energy balance in Arctic regions 2.3.3 Polar amplification mechanisms 2.3.4 Arctic-mid-latitude linkages 2.4 Weather and climate extremes 2.4.1 Recent trends 2.4.2 Dynamical driver of temperature extremes 3 DATA AND METHODS 3.1 ERA5 reanalysis 3.2 Model experiments 3.2.1 The atmospheric general circulation model ECHAM6 3.2.2 Polar Amplification Intercomparison Project data 3.3 Methods 3.3.1 Statistical significance 3.3.2 Extreme definition 4 RESULTS AND DISCUSSION 4.1 Mean circulation in ERA5 and ECHAM6 experiments 4.1.1 Climatological mean states in ERA5 and the reference simulation 4.1.2 Climatological responses in ECHAM6 sensitivity experiments 4.2 Circulation regimes and sea ice-induced frequency changes 4.2.1 Regime structures in ERA5 and ECHAM6 experiments 4.2.2 Regime frequency changes in ERA 4.2.3 Regime frequency changes in ECHAM6 experiments 4.3 Changes in Northern Hemispheric temperature extremes induced by sea ice loss 4.3.1 Extreme occurrence frequency changes 4.3.2 Temperature return level changes 4.4 Links between circulation regimes and extremes over Europe 4.4.1 Winter temperature extremes 4.4.2 Summer heat extremes 4.4.3 Winter wind extremes 4.5 Decomposition of sea ice-induced frequency changes in European winter extremes 4.5.1 Midwinter cold extremes along a SCAN storyline 4.5.2 January warm extremes along a ATl- storyline 4.5.3 February warm extremes along a NAO+ storyline 4.5.4 Comparison with futSST 4.5.5 January wind extremes along a ATL- storyline 4.6 Circulation Analogue-based approach for summer season 4.6.1 ERA5 event definitions 4.6.2 Reference flows and analogues in ERA5 4.6.3 Circulation analogues in ECHAM6 experiments 4.6.4 Decomposition of sea ice-induced changes in European heat extremes 5 CONCLUSION 5.1 Summary 5.2 Final discussion and outlook Appendix A METHODS A.1 Principal Component Analysis A.2 𝑘-Means clustering A.2.1 Algorithm A.2.2 Computation of circulation regimes A.3 Taylor diagram A.4 Regression model for describing ERA5 regime frequency changes A.4.1 General setup A.4.2 Multinomial Logistic Regression A.4.3 Linear predictor A.5 Definition and calculation of return levels A.5.1 Block maxima approach and Generalized Extreme Value distribution A.5.2 Return level estimation A.6 Framework for conditional extreme event attribution Appendix B ADDITIONAL FIGURES B.1 Circulation regimes and sea ice-induced frequency changes B.2 Changes in Northern Hemispheric temperature extremes induced by sea ice loss B.3 Links between circulation regimes and extremes over Europe B.3.1 Conditioned vs. unconditioned ERA5 and wind extreme probabilities B.3.2 Wind and synoptic-scale activity anomalies B.4 Decomposition of sea ice-induced frequency changes in European winter extremes B.5 Circulation Analogue-based approach for summer season B.6 Miscellaneous B.6.1 Recent Arctic sea ice trends B.6.2 futSST forcing field B.6.3 Fluxes over sea ice and ocean surfaces in ECHAM6 BIBLIOGRAPHY
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: AWI A6-21-94541
    Description / Table of Contents: Stratospheric variability is one of the main potential sources for sub-seasonal to seasonal predictability in mid-latitudes in winter. Stratospheric pathways play an important role for long-range teleconnections between tropical phenomena, such as the quasi-biennial oscillation (QBO) and El Niño-Southern Oscillation (ENSO), and the mid-latitudes on the one hand, and linkages between Arctic climate change and the mid-latitudes on the other hand. In order to move forward in the field of extratropical seasonal predictions, it is essential that an atmospheric model is able to realistically simulate the stratospheric circulation and variability. The numerical weather prediction (NWP) configuration of the ICOsahedral Non-hydrostatic atmosphere model ICON is currently being used by the German Meteorological Service for the regular weather forecast, and is intended to produce seasonal predictions in future. This thesis represents the first extensive evaluation of Northern Hemisphere stratospheric winter circulation in ICON-NWP by analysing a ...
    Type of Medium: Dissertations
    Pages: viii, 119 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Dissertation, Universität Potsdam, 2020 , Contents1 Introduction 1.1 Motivation: Seasonal prediction 1.2 The new atmosphere model ICON 1.3 Research questions 2 Theoretical background 2.1 Fundamentals of atmospheric circulation 2.1.1 Primitive equations 2.1.2 The global energy budget 2.1.3 Baroclinic instability 2.1.4 Vertical structure of the atmosphere 2.2 Stratospheric dynamics 2.2.1 Circulation patterns 2.2.2 Atmospheric waves 2.2.3 Sudden stratospheric warmings 2.2.4 Quasi-biennial oscillation 2.3 Atmospheric Teleconnections 2.3.1 NAM, NAO and PNA 2.3.2 El Niño-Southern Oscillation 2.3.3 Arctic-midlatitude linkages 3 Atmospheric model and methods of analysis 3.1 Atmospheric model ICON-NWP 3.1.1 Model description 3.1.2 Experimental setup 3.2 Reanalysis data ERA-Interim 3.3 Methods of analysis 3.3.1 NAM index for stratosphere–troposphere coupling 3.3.2 Stratospheric warmings 3.3.3 ENSO index and composites 3.3.4 Bias and error estimation 3.3.5 Statistical significance 4 Results 4.1 Evaluation of seasonal experiments with ICON-NWP 4.1.1 Tropospheric circulation 4.1.2 Stratospheric circulation 4.2 Effect of gravity wave drag parameterisations 4.2.1 Stratospheric effects 4.2.2 Effects on stratosphere-troposphere coupling 4.2.3 Tropospheric effects 4.3 Low latitudinal influence on the stratospheric polar vortex 4.3.1 Quasi-biennial oscillation 4.3.2 El Niño-Southern Oscillation 4.4 Arctic-midlatitude linkages 4.4.1 Tropospheric processes 4.4.2 Stratospheric pathway 4.4.3 Sea ice sensitivity experiment 5 Discussion and outlook Bibliography Appendix
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: AWI A4-06-0007
    Type of Medium: Monograph available for loan
    Pages: ca. 500 S.
    Language: English
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZSP-168-204 ; MOP 47975 / Mitte
    In: Berichte zur Polarforschung
    Type of Medium: Series available for loan
    Pages: 133 S. : Ill., graph. Darst.
    ISSN: 0176-5027
    Series Statement: Berichte zur Polarforschung 204
    Language: German
    Note: Zugl.: Berlin, Univ., Diss., 1996
    Location: AWI Reading room
    Location: MOP - must be ordered
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Offenbach (Main) : DWD, Geschäftsbereich Forschung und Entwicklung
    Associated volumes
    Call number: MOP Per 900(42)
    In: Arbeitsergebnisse
    Type of Medium: Monograph available for loan
    Pages: 97 S. : graph. Darst., Kt.
    Series Statement: Arbeitsergebnisse / Deutscher Wetterdienst, Geschäftsbereich Forschung und Entwicklung 42
    Location: MOP - must be ordered
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Offenbach (Main) : Dt. Wetterdienst, Geschäftsbereich Forschung und Entwicklung
    Associated volumes
    Call number: AWI A17-97-0477
    In: Arbeitsergebnisse
    Type of Medium: Monograph available for loan
    Pages: II, 49 S.
    Series Statement: Arbeitsergebnisse / Deutscher Wetterdienst, Geschäftsbereich Forschung und Entwicklung 47
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: AWI A7-24-95795
    Description / Table of Contents: Arctic climate change is marked by intensified warming compared to global trends and a significant reduction in Arctic sea ice which can intricately influence mid-latitude atmospheric circulation through tropo- and stratospheric pathways. Achieving accurate simulations of current and future climate demands a realistic representation of Arctic climate processes in numerical climate models, which remains challenging. Model deficiencies in replicating observed Arctic climate processes often arise due to inadequacies in representing turbulent boundary layer interactions that determine the interactions between the atmosphere, sea ice, and ocean. Many current climate models rely on parameterizations developed for mid-latitude conditions to handle Arctic turbulent boundary layer processes. This thesis focuses on modified representation of the Arctic atmospheric processes and understanding their resulting impact on large-scale mid-latitude atmospheric circulation within climate models. The improved turbulence parameterizations, recently developed based on Arctic measurements, were implemented in the global atmospheric circulation model ECHAM6. This involved modifying the stability functions over sea ice and ocean for stable stratification and changing the roughness length over sea ice for all stratification conditions. Comprehensive analyses are conducted to assess the impacts of these modifications on ECHAM6's simulations of the Arctic boundary layer, overall atmospheric circulation, and the dynamical pathways between the Arctic and mid-latitudes. Through a step-wise implementation of the mentioned parameterizations into ECHAM6, a series of sensitivity experiments revealed that the combined impacts of the reduced roughness length and the modified stability functions are non-linear. Nevertheless, it is evident that both modifications consistently lead to a general decrease in the heat transfer coefficient, being in close agreement with the observations. Additionally, compared to the reference observations, the ECHAM6 model falls short in accurately representing unstable and strongly stable conditions. The less frequent occurrence of strong stability restricts the influence of the modified stability functions by reducing the affected sample size. However, when focusing solely on the specific instances of a strongly stable atmosphere, the sensible heat flux approaches near-zero values, which is in line with the observations. Models employing commonly used surface turbulence parameterizations were shown to have difficulties replicating the near-zero sensible heat flux in strongly stable stratification. I also found that these limited changes in surface layer turbulence parameterizations have a statistically significant impact on the temperature and wind patterns across multiple pressure levels, including the stratosphere, in both the Arctic and mid-latitudes. These significant signals vary in strength, extent, and direction depending on the specific month or year, indicating a strong reliance on the background state. Furthermore, this research investigates how the modified surface turbulence parameterizations may influence the response of both stratospheric and tropospheric circulation to Arctic sea ice loss. The most suitable parameterizations for accurately representing Arctic boundary layer turbulence were identified from the sensitivity experiments. Subsequently, the model's response to sea ice loss is evaluated through extended ECHAM6 simulations with different prescribed sea ice conditions. The simulation with adjusted surface turbulence parameterizations better reproduced the observed Arctic tropospheric warming in vertical extent, demonstrating improved alignment with the reanalysis data. Additionally, unlike the control experiments, this simulation successfully reproduced specific circulation patterns linked to the stratospheric pathway for Arctic-mid-latitude linkages. Specifically, an increased occurrence of the Scandinavian-Ural blocking regime (negative phase of the North Atlantic Oscillation) in early (late) winter is observed. Overall, it can be inferred that improving turbulence parameterizations at the surface layer can improve the ECHAM6's response to sea ice loss.
    Description / Table of Contents: Der Klimawandel in der Arktis ist durch eine im Vergleich zum globalen Klimawandel verstärkte Erwärmung und einem damit verbundenen starken Rückgang des arktischen Meereises gekennzeichnet. Da dieser verstärkte Klimawandel in der Arktis die atmosphärische Zirkulation in den mittleren Breiten auf komplexe Weise über tropo- und stratosphärische Pfade beeinflussen kann, ist eine realistische Darstellung arktischer Prozesse in numerischen Klimamodellen für zuverlässige Simulationen gegenwärtiger und zukünftiger Klimaänderungen notwendig, stellt aber nach wie vor eine Herausforderung dar. Ein wesentlicher Grund für Modelldefizite bei der Reproduktion der beobachteten arktischen Klimaprozesse sind Unzulänglichkeiten bei der Darstellung von turbulenten Grenzschichtprozessen, die die Wechselwirkung zwischen Atmosphäre, Meereis und Ozean bestimmen. Gegenwärtige Klimamodelle verwenden für die Darstellung von turbulenten Grenzschichtprozessen in der Arktis häufig Parametrisierungen, die für Bedingungen in mittleren Breiten entwickelt wurden. Diese Arbeit zielt auf eine bessere Darstellung arktischer atmosphärischer Prozesse in Klimamodellen und ein besseres Verständnis der daraus resultierenden Auswirkungen auf die simulierte großskalige atmosphärische Zirkulation in mittleren Breiten ab. Aus diesem Grund wurde in dieser Arbeit eine Hierarchie von verbesserten Turbulenzparametrisierungen in das globale atmosphärische Zirkulationsmodell ECHAM6 implementiert, die basierend auf arktischen Messungen kürzlich entwickelt wurden. Dabei wurden die Stabilitätsfunktionen über Meereis und Ozean für stabile Schichtung sowie die Rauhigkeitslänge über dem Meereis für alle Schichtungsbedingungen modifiziert. Anschließend wurde eine umfassende Analyse der jeweiligen Sensitivitätsexperimente durchgeführt, um den Einfluss dieser Modifikationen auf die Simulationen der arktischen Grenzschicht, der großräumigen atmosphärischen Zirkulation und der dynamischen Verbindungswege zwischen der Arktis und den mittleren Breiten in ECHAM6 zu bewerten. Durch eine schrittweise Implementierung der Hierarchie von verbesserten Turbulenzparameterisierungen in ECHAM6 wurden in einer Reihe von Sensitivitätsexperimenten folgende Erkenntnisse gewonnen: Die kombinierte Auswirkung der reduzierten Rauhigkeitslänge und der modifizierten Stabilitätsfunktionen ist nichtlinear. Dennoch zeigt sich, dass beide Modifikationen zu einer besseren Darstellung arktischer Grenzschichtprozesse führen, insbesondere stimmt die Verringerung des Transferkoeffizienten für Wärme gut mit den Beobachtungen überein. Im Vergleich zu den Referenzbeobachtungen zeigt das ECHAM6-Modell jedoch eine unrealistische Darstellung des Auftretens labiler und stark stabiler Schichtungsbedingungen. Die geringere Häufigkeit von stark stabilen Bedingungen begrenzt den Einfluss der modifizierten Stabilitätsfunktionen. Wenn in den Modelldaten nur die Fälle mit stark stabiler Schichtung analysiert werden, führt die Verwendung der modifizierten Stabilitätsfunktionen zu sehr kleinen turbulenten sensiblen Wärmeflüssen in guter Übereinstimmung mit den Beobachtungen. Dieses Verhalten wurde in den Modellsimulationen mit der Standardturbulenzparametrisierung nicht reproduziert. Es wurde zudem festgestellt, dass die Änderungen in den Turbulenzparametrisierungen einen statistisch signifikanten Einfluss auf die großskaligen Temperatur- und Windfelder in verschiedenen Höhen bis in die Stratosphäre sowohl in der Arktis als auch in den mittleren Breiten haben. Diese signifikanten Signale variieren in ihrer Stärke und Lage je nach Monat und Jahr, was eine starke Abhängigkeit vom Hintergrundzustand anzeigt. Des Weiteren wird in dieser Arbeit untersucht, wie die modifizierten Turbulenzparametrisierungen die Reaktion der troposphärischen und stratosphärischen Zirkulation auf den Rückgang des arktischen Meereises beeinflussen. Dafür wurden die geeignetsten Parametrisierungen zur Darstellung der arktischen Grenzschichtturbulenz anhand der Sensitivitätsexperimente identifiziert. Anschließend wurde die Reaktion des Modells ECHAM6 auf den Meereisverlust durch weitere lange Simulationen mit unterschiedlichen vorgegebenen Meereisbedingungen bewertet. Dabei simuliert die ECHAM6 Modellversion mit verbesserter Turbulenzparametrisierung eine größere vertikale Ausdehnung der arktischen troposphärischen Erwärmung bei Meereisrückgang und zeigt somit eine verbesserte Übereinstimmung mit den Reanalyse-Daten. Darüber hinaus treten in dieser Simulation im Gegensatz zu den Kontrollexperimenten häufiger bevorzugte Zirkulationsmuster auf, die dafür bekannt sind, dass sie Änderungen in der Arktis dynamisch mit den mittleren Breiten verknüpfen. Insbesondere treten blockierende Hochdrucklagen über Skandinavien/Ural im Frühwinter und die negative Phase der Nordatlantischen Oszillation im Spätwinter häufiger auf. Daher lässt sich ableiten, dass durch eine Verbesserung der Turbulenzparametrisierung der Effekt von Meereisverlust in ECHAM6 realistischer dargestellt werden kann.
    Type of Medium: Dissertations
    Pages: XIV, 119 Seiten Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2024 , Contents 1 Introduction 1.1 Motivation 1.2 Research questions 2 Scientific Background 2.1 Earth’s energy budget 2.2 The atmospheric boundary layer 2.2.1 The boundary layer stratification 2.2.2 Governing equations, turbulence, and approximations 2.2.3 Closure problem 2.2.4 Monin-Obukhov similarity theory 2.3 Large-scale atmospheric circulation 2.3.1 Atmospheric teleconnections 2.3.2 Arctic-mid-latitude linkages 3 Model & Methods 3.1 Atmospheric model ECHAM6 3.1.1 The dynamical core 3.1.2 Physical parameterizations 3.1.3 Original boundary layer parameterizations 3.1.4 Modified boundary layer parameterizations 3.2 Experimental setup 3.3 Observational data 3.4 Reanalysis data 3.5 Methods of analysis 4 Results 4.1 Boundary layer response 4.2 Global responses of the model 4.3 Response to sea ice change 5 Conclusions & Outlook References A Supplementary figures and tables A.1 Global responses of the model A.2 Response to sea ice change
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: The altitude dependent variability of ozone in the polar stratosphere is regularly observed by balloon-borne ozonesonde observations at Neumayer Station (70°S) in the Antarctic and at Koldewey Station (79°N)in the Arctic. The reasons for observed seasonal and interannual variability and long-term changes are discussed. Differencs between the hemispheres are identified and discussed in light of differing dynamical and chemical conditions. Sicne the mid- 1980s, rapid chemical ozone loss has been recorded in the lower Antarctic stratosphere during the spring season. Using coordinated ozone soundings in some Arctic winters, similar chemical ozone loss rates have been detected related to periods of low temperatures. The currently observed cooling trend of the stratosphere, potentially caused by the increase of anthropogenic greenhouse gases, may further strengthen chemical ozone removal in the Arctic. However, the role of internal climate oscillations in observed temperature trends is still uncertain. First results of a 10000 year intergration of a low order climate model indicate significant internal climate variability. on decadal time scales, that may alter the effect of increasing levels of greenhouse gases in the polar stratosphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 91 (1999), S. 165-189 
    ISSN: 1573-1472
    Keywords: Stable boundary layer ; Boundary-layer height ; Universal functions ; Similarity theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Turbulence measurements up to 11-m height and longterm profile measurements up to 45-m height performed at the German Neumayer Station in Antarctica are used to investigate different components of turbulence closure schemes of the stable boundary layer. The results confirm the linear relationships for the universal functions of momentum and heat exchange in the stability range z/L 〈 0.8 ... 1, whereas the local scaling approach should be used above the surface layer. Furthermore, boundary-layer heights below 50 m are frequently observed at this coastal Antarctic site, mainly due to the influence of stability above the boundary layer. It is shown that the inclusion of this stability into parametrization relations is necessary to provide realistic equilibrium heights of the stable boundary layer. Two relations, based on different physical approaches, were successfully applied for the parametrization of the equilibrium height.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1999-05-01
    Print ISSN: 0006-8314
    Electronic ISSN: 1573-1472
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...