ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Freshwater biology 46 (2001), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. Calcium (Ca) has been lost from forest soils at the Hubbard Brook Experimental Forest (HBEF) because of decreased atmospheric input of Ca and high input of acid anions. Through time, this Ca loss has led to low streamwater Ca concentration and this change may affect stream ecosystem processes. 
2. To test both the biogeochemical response of streams to increased calcium concentration and the role of streams in retaining calcium lost from soils, we added c. 120 μeq Ca L−1 as CaCl2 to two second-order streams at HBEF for 2 months. One stream (buffered) also received an equivalent amount of NaHCO3 to simulate the increase in pH and alkalinity if Ca were added with associated HCO3− ion. The other stream (unbuffered) received only CaCl2. We collected water samples along a transect above and below the addition site at 11 dates: two before, seven during, and two after the addition. 
3. Increase in pH in the buffered stream ranged from 5.6 to about 7.0 in the treated section. There was a net uptake of Ca on all sampling dates during the addition and these uptake rates were positively related to pH. Between 10 and 50% of the added Ca was taken up during the release in the 80-m study reach. In the unbuffered stream, there was net uptake of Ca on only two dates, suggesting lower Ca uptake. 
4. Water samples collected after the addition was stopped showed that a small fraction of the added Ca desorbed from sediments; the remainder was apparently in longer-term storage in the sediments. No Ca desorbed from the stream sediments in the unbuffered stream, showing that sorption/desorption may be controlled by a pH-induced increase in the number of exchange sites. 
5. These streams appeared to be a significant sink for Ca over a 2-month time scale, and thus, change in streamwater Ca during a year may be due to processing of Ca within the stream channel, as well as to changes in inputs from the catchment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-0629
    Keywords: Key words: nitrogen cycling; macroinvertebrates; stream; nitrogen-15; tracer; model; detritivory; Coweeta Hydrologic Laboratory (North Carolina).
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: ABSTRACT Cycling of nitrogen (N) is commonly studied in aquatic ecosystems; however, most studies examine only parts of the N cycle, such as budgets, N uptake lengths, or oxidative transformations. To integrate conceptually and experimentally several aspects of the N cycle in a stream, we combined a N-cycling model and a tracer addition of nitrogen-15 (15N) to Hugh White Creek, a second-order forested mountain stream in North Carolina (USA). We calibrated a steady-state box model for N cycling in 5-m stream segments that included dissolved, detrital, and biotic compartments. This model was parameterized based on prior studies and used to predict the expected distribution of tracer 15N in all compartments through both time and distance downstream of the addition site. We tested the model results with a 23-day continuous addition of 15N-NH4 + to the stream. Deviations of field data from model predictions suggested areas in which we lacked understanding of the N cycle. Downstream distribution of 15N in epilithon and moss matched model predictions, indicating that our prior estimations of N uptake rates were correct. Leaves and fine detritus contained less label than predicted by the model, yet their consumers had both higher δ15N than predicted and higher δ15N than the detritus itself, suggesting selective assimilation of microbial N from ingested detritus. Splitting fine benthic organic N (FBON) into a microbial and recalcitrant pool gave better predictions of FBON and seston δ15N values relative to field data, yet overestimated invertebrate consumer δ15N possibly because our estimates of the fraction of invertebrate N derived from microbes were too high. We predicted that much of the labeled N would move downstream via FBON suspension and transport. We found that most of the 15N remained near the addition site 33 days after the addition was stopped, suggesting that the stream is highly retentive of particulate N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-05-18
    Description: Gas exchange is a parameter needed in stream metabolism and trace gas emissions models. One way to estimate gas exchange is via measuring the decline of added tracer gases such as sulfur hexafluoride (SF6). Estimates of oxygen (O2) gas exchange derived from SF6 additions require scaling via Schmidt number (Sc) ratio, but this scaling is uncertain under conditions of high gas exchange via bubbles because scaling depends on gas solubility as well as Sc. Because argon (Ar) and O2 have nearly identical Schmidt numbers and solubility, Ar may be a useful tracer gas for estimating stream O2 exchange. Here we compared rates of gas exchange measured via Ar and SF6 for turbulent mountain streams in Wyoming, USA. We measured Ar as the ratio of Ar : N2 using a membrane inlet mass spectrometer (MIMS). Normalizing to N2 confers higher precision than simply measuring [Ar] alone. We consistently enriched streams with Ar from 1 to 18 % of ambient Ar concentration and could estimate gas exchange rate using an exponential decline model. The mean ratio of gas exchange of Ar relative to SF6 was 1.8 (credible interval 1.1 to 2.5) compared to the theoretical estimate 1.35, showing that using SF6 would have underestimated exchange of Ar. Steep streams (slopes 11–12 %) had high rates of gas exchange velocity normalized to Sc=600 (k600, 57–210 m d−1), and slope strongly predicted variation in k600 among all streams. We suggest that Ar is a useful tracer because it is easily measured, requires no scaling assumptions to estimate rates of O2 exchange, and is not an intense greenhouse gas as is SF6. We caution that scaling from rates of either Ar or SF6 gas exchange to CO2 is uncertain due to solubility effects in conditions of bubble-mediated gas transfer.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2002-08-01
    Print ISSN: 1432-9840
    Electronic ISSN: 1435-0629
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-06
    Description: Gas exchange is a parameter needed in stream metabolism and trace gas emissions models. One way to estimate gas exchange is via measuring the decline of added tracer gases such as sulfur hexafluoride (SF6). Estimates of oxygen (O2) gas exchange derived from SF6 additions require scaling via Schmidt number (Sc) ratio, but this scaling is uncertain under conditions of high gas exchange via bubbles because scaling depends on gas solubility as well as Sc. Because argon (Ar) and O2 have nearly identical Schmidt numbers and solubility, Ar may be a useful tracer gas for estimating stream O2 exchange. Here we compared rates of gas exchange measured via Ar and SF6 for turbulent mountain streams in Wyoming USA. We measured Ar as the ratio of Ar : N2 using a membrane inlet mass spectrometer. Normalizing to N2 confers higher precision than simply measuring [Ar] alone. We consistently enriched streams with Ar from 1 % to 15 % of ambient Ar concentration and could estimate gas exchange using an exponential decline model. The mean ratio of gas exchange of Ar relative to SF6 was 1.8 (credible interval 1.1 to 2.5) compared to the theoretical estimate 1.35, showing that using SF6 would have underestimated exchange of Ar. Steep streams (slopes 11–12 %) had high rates of gas exchange velocity normalized to Sc = 600 (k600, 57–210 m d−1), and slope strongly predicted variation in k600 among all streams. We suggest that Ar is a useful tracer because it is easily measured, requires no scaling assumptions to estimate rates of O2 exchange, and is not an intense greenhouse gas as is SF6. We caution that scaling from rates of Ar or SF6 gas exchange to CO2 is uncertain due to solubility effects in conditions of bubble mediated gas transfer.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...