ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2019-07-19
    Description: Winters with frequent atmospheric blocking, in a band of latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean. This is evident in atmospheric reanalysis data, both modern and for the full 20th century. Blocking is approximately in phase with Atlantic multidecadal ocean variability (AMV). Wintertime atmospheric blocking involves a highly distorted jetstream, isolating large regions of air from the westerly circulation. It influences the ocean through windstress-curl and associated air/sea heat flux. While blocking is a relatively high-frequency phenomenon, it is strongly modulated over decadal timescales. The blocked regime (weaker ocean gyres, weaker air-sea heat flux, paradoxically increased transport of warm subtropical waters poleward) contributes to the warm phase of AMV. Atmospheric blocking better describes the early 20thC warming and 1996-2010 warm period than does the NAO index. It has roots in the hemispheric circulation and jet stream dynamics. Subpolar Atlantic variability covaries with distant AMOC fields: both these connections may express the global influence of the subpolar North Atlantic ocean on the global climate system.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6185.2012 , 2012 Ocean Sciences Meeting; Feb 20, 2012 - Feb 24, 2012; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Ocean state estimates from SODA assimilation are analyzed to understand how major shifts in the North Atlantic Current path relate to AMOC, and how these shifts are related to large scale ocean circulation and surface forcing. These complement surface-drifter and altimetry data showing the same events. SODA data indicate that the warm water limb of AMOC, reaching to at least 600m depth, expanded in density/salinity space greatly after 1995, and that Similar events occurred in the late 1960s and around 1980. While there were large changes in the upper limb, there was no immediate response in the dense return flow, at least not in SODA, however one would expect a delayed response of increasing AMOC due to the positive feedback from increased salt transport. These upper limb changes are winddriven, involving changes in the eastern subpolar gyre, visible in the subduction of low potential vorticity waters. The subtropical gyre has been weak during the times of the northward intrusions of the highly saline subtropical waters, while the NAO index has been neutral or in a negative phase. The image of subtropical/subpolar gyre exchange through teleconnections within the AMOC overturning cell will be described.
    Keywords: Oceanography
    Type: GSFC.ABS.4747.2011 , 2010 Ocean Sciences Meeting; Feb 22, 2010 - Feb 26, 2010; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L19704, doi:10.1029/2008GL034791.
    Description: Sea ice drift data (from Russian North Pole stations, various ice camps, and the International Arctic Buoy Program) and surface wind stress data from the NCAR/NCEP Reanalysis are analyzed to determine their long-term trends and causality. The study finds that both parameters (ice drift and wind stress) show gradual acceleration over last 50 years. Significant positive trends are present in both winter and summer data. The major cause of observed positive trends is increasing Arctic storm activity over the Transpolar Drift Stream caused by a shift of storm tracks toward higher latitudes. It is speculated, with some observational evidence, that the increased stirring of the ocean by winds could hasten the transition of the Arctic toward a weakly stratified ocean with a potential for deep convection and a new sink for atmospheric CO2.
    Description: We are grateful for funding from the NASA Headquarters, NSF and IARC.
    Keywords: Climate variability ; Arctic and Antarctic oceanography ; Ice mechanics and air/sea/ice exchange processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C04S08, doi:10.1029/2006JC003916.
    Description: Monthly sea levels from five Arctic Ocean Model Intercomparison Project (AOMIP) models are analyzed and validated against observations in the Arctic Ocean. The AOMIP models are able to simulate variability of sea level reasonably well, but several improvements are needed to reduce model errors. It is suggested that the models will improve if their domains have a minimum depth less than 10 m. It is also recommended to take into account forcing associated with atmospheric loading, fast ice, and volume water fluxes representing Bering Strait inflow and river runoff. Several aspects of sea level variability in the Arctic Ocean are investigated based on updated observed sea level time series. The observed rate of sea level rise corrected for the glacial isostatic adjustment at 9 stations in the Kara, Laptev, and East Siberian seas for 1954–2006 is estimated as 0.250 cm/yr. There is a well pronounced decadal variability in the observed sea level time series. The 5-year running mean sea level signal correlates well with the annual Arctic Oscillation (AO) index and the sea level atmospheric pressure (SLP) at coastal stations and the North Pole. For 1954–2000 all model results reflect this correlation very well, indicating that the long-term model forcing and model reaction to the forcing are correct. Consistent with the influences of AO-driven processes, the sea level in the Arctic Ocean dropped significantly after 1990 and increased after the circulation regime changed from cyclonic to anticyclonic in 1997. In contrast, from 2000 to 2006 the sea level rose despite the stabilization of the AO index at its lowest values after 2000.
    Description: This research is supported by the National Science Foundation Office of Polar Programs (under cooperative agreements OPP- 0002239 and OPP- 0327664) with the International Arctic Research Center, University of Alaska Fairbanks, and by the Climate Change Prediction Program of the Department of Energy’s Office of Biological and Environmental Research. The development of the UW model is also supported by NASA grants NNG04GB03G and NNG04GH52G and NSF grants OPP-0240916 and OPP-0229429.
    Keywords: Arctic Ocean models ; Model validation ; Sea level variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2013. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Association for the Sciences of Limnology and Oceanography, doi:10.4319/lo.2013.58.3.0803.
    Description: Decadal-scale regime shifts in Northwest Atlantic shelf ecosystems can be remotely forced by climate-associated atmosphere–ocean interactions in the North Atlantic and Arctic Ocean Basins. This remote climate forcing is mediated primarily by basin- and hemispheric-scale changes in ocean circulation. We review and synthesize results from process-oriented field studies and retrospective analyses of time-series data to document the linkages between climate, ocean circulation, and ecosystem dynamics. Bottom-up forcing associated with climate plays a prominent role in the dynamics of these ecosystems, comparable in importance to that of top-down forcing associated with commercial fishing. A broad perspective, one encompassing the effects of basin- and hemispheric-scale climate processes on marine ecosystems, will be critical to the sustainable management of marine living resources in the Northwest Atlantic.
    Description: Funding for this research was provided by the National Science Foundation as part of the Regional and Pan-Regional Synthesis Phases of the U.S. Global Ocean Ecosystem (GLOBEC) Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 3 (2012): 208-213, doi:10.5670/oceanog.2012.64.
    Description: During recent decades, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. Additionally, shifts in the Arctic's atmospheric pressure field have altered surface winds, ocean circulation, and freshwater storage in the Beaufort Gyre. These processes have resulted in variable patterns of freshwater export from the Arctic Ocean, including the emergence of great salinity anomalies propagating throughout the North Atlantic. Here, we link these variable patterns of freshwater export from the Arctic Ocean to the regime shifts observed in Northwest Atlantic shelf ecosystems. Specifically, we hypothesize that the corresponding salinity anomalies, both negative and positive, alter the timing and extent of water-column stratification, thereby impacting the production and seasonal cycles of phytoplankton, zooplankton, and higher-trophic-level consumers. Should this hypothesis hold up to critical evaluation, it has the potential to fundamentally alter our current understanding of the processes forcing the dynamics of Northwest Atlantic shelf ecosystems.
    Description: Funding for this research was provided by the National Science Foundation as part of the Regional and Pan-Regional Synthesis Phases of the US Global Ocean Ecosystem (GLOBEC) Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C00D13, doi:10.1029/2011JC007257.
    Description: Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004–2008); airborne electromagnetic measurements (2001–2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992–2008) and from submarines (1975–2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982–1986) and coastal stations (1998–2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than ∼2 m and underestimate the thickness of ice measured thicker than about ∼2 m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25–30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models.
    Description: This research is supported by the National Science Foundation Office of Polar Programs covering awards of AOMIP collaborative research projects: ARC-0804180 (M.J.), ARC-0804010 (A.P.), ARC-0805141 (W.M.), ARC080789, and ARC0908769 (J.Z.). This research is also supported by the Russian Foundation of Basic Research, projects 09-05-00266 and 09-05-01231. At the National Oceanography Centre Southampton, this study was funded by the UK Natural Environment Research Council as a contribution to the Marine Centres’ Strategic Research Programme Oceans 2025.
    Description: 2012-09-15
    Keywords: AOMIP ; ICESat ; Ice thickness ; Sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C03051, doi:10.1029/2003JC001940.
    Description: Arctic Ocean model simulations have revealed that the Arctic Ocean has a basin-wide oscillation with cyclonic and anticyclonic circulation anomalies (Arctic Ocean Oscillation (AOO)) that has a prominent decadal variability [Proshutinsky and Johnson, 1997]. This study explores how the simulated AOO affects the Arctic Ocean stratification and its relationship to the sea ice cover variations. The simulation uses the Princeton Ocean Model coupled to sea ice [Häkkinen and Mellor, 1992; Häkkinen, 1999]. The surface forcing is based on National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis and its climatology, of which the latter is used to force the model spin-up phase. Our focus is to investigate the competition between ocean dynamics and ice formation/melt on the Arctic basin-wide freshwater balance. We find that changes in the Atlantic water inflow can explain almost all of the simulated freshwater anomalies in the main Arctic basin. The Atlantic water inflow anomalies are an essential part of AOO, which is the wind driven barotropic response to the Arctic Oscillation (AO). The baroclinic response to AO, such as Ekman pumping in the Beaufort Gyre, and ice melt/freeze anomalies in response to AO are less significant considering the whole Arctic freshwater balance.
    Description: We gratefully acknowledge the support from National Science Foundation under Grant No OPP-0230184 (AP) and from NASA Headquarters (SH).
    Keywords: Fresh water ; Arctic ; Variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C03042, doi:10.1029/2003JC002007.
    Description: Sea level is a natural integral indicator of climate variability. It reflects changes in practically all dynamic and thermodynamic processes of terrestrial, oceanic, atmospheric, and cryospheric origin. The use of estimates of sea level rise as an indicator of climate change therefore incurs the difficulty that the inferred sea level change is the net result of many individual effects of environmental forcing. Since some of these effects may offset others, the cause of the sea level response to climate change remains somewhat uncertain. This paper is focused on an attempt to provide first-order answers to two questions, namely, what is the rate of sea level change in the Arctic Ocean, and furthermore, what is the role of each of the individual contributing factors to observed Arctic Ocean sea level change? In seeking answers to these questions we have discovered that during the period 1954–1989 the observed sea level over the Russian sector of the Arctic Ocean is rising at a rate of approximately 0.123 cm yr−1 and that after correction for the process of glacial isostatic adjustment this rate is approximately 0.185 cm yr−1. There are two major causes of this rise. The first is associated with the steric effect of ocean expansion. This effect is responsible for a contribution of approximately 0.064 cm yr−1 to the total rate of rise (35%). The second most important factor is related to the ongoing decrease of sea level atmospheric pressure over the Arctic Ocean, which contributes 0.056 cm yr−1, or approximately 30% of the net positive sea level trend. A third contribution to the sea level increase involves wind action and the increase of cyclonic winds over the Arctic Ocean, which leads to sea level rise at a rate of 0.018 cm yr−1 or approximately 10% of the total. The combined effect of the sea level rise due to an increase of river runoff and the sea level fall due to a negative trend in precipitation minus evaporation over the ocean is close to 0. For the Russian sector of the Arctic Ocean it therefore appears that approximately 25% of the trend of 0.185 cm yr−1, a contribution of 0.048 cm yr−1, may be due to the effect of increasing Arctic Ocean mass.
    Description: This material is based upon work supported by the National Science Foundation under grant 0136432.
    Keywords: Arctic ; Sea level rise ; Decadal variability ; Steric effects ; Inverted barometer effect ; Glacial isostatic adjustment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...