ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-04-20
    Description: This data set unites the individual data of the MOSAiC Airborne observations in the Central Arctic (MOSAiC-ACA) campaign, carried out in late summer 2020 northwest of Svalbard (Norway). The objective of MOSAiC-ACA was to study turbulent fluxes of energy and momentum in the Arctic boundary layer and low- and mid-level mixed-phase clouds and their role in Arctic amplification in the exit area of the research vessel Polarstern during the MOSAiC expedition. The research aircraft Polar 5 was equipped with active and passive remote sensing instruments, measurements for turbulent and radiative energy fluxes, insitu probes for cloud and aerosol particles, and dropsondes. In total, 10 research flights with 44 flight hours over the open ocean and the marginal sea ice zone have been performed between 30 August and 13 September 2020.
    Keywords: AC3; airborne; Arctic; Arctic Amplification; In situ; MOSAiC; MOSAiC-ACA; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polar 5; remote sensing; Svalbard
    Type: Dataset
    Format: 13 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-20
    Description: During MOSAiC-ACA field campaign in late summer 2020 the Basler BT-67 research aircraft Polar 5 based in Spitzbergen (78.24 N, 15.49 E) was equiped with an advanced in-situ cloud payload by the DLR including a combination of the Cloud Droplet Probe, Cloud Imaging Probe and Precipitation Imaging Probe. The data sets provides data from all DLR particle measurement instruments including micropysical cloud properties like particle size distribution, total particle number concentration, effective diameter, median volume diameter and an estimated cloud/liquid/ice water content. In combination the dataset includes all particle sizes from 2.8 - 6400.0µm in diameter. In addition to the particle measurement systems the Nevzorov probe provides bulk measurements of the liquid and total water content. These cloud measurements were mainly conducted in low and midlevel clouds in the Fram Strait over sea ice and the open ocean. This measurement campaign is embedded in the Transregional Collaborative Research Centre TR 172 (ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3.
    Keywords: AC; AC3; Aircraft; Arctic; Arctic Amplification; Binary Object; Binary Object (File Size); CDP; CIP; Cloud droplet probe; Cloud imaging probe; Cloud Microphysics; clouds; Date/Time of event; Date/Time of event 2; Event label; Fram Strait; In-situ; In-Situ Measurements; Latitude of event; Longitude of event; mixed-phase clouds; MOSAiC; MOSAiC20192020; MOSAiC-ACA; Multidisciplinary drifting Observatory for the Study of Arctic Climate; NEVZ; Nevzorov probe; P5_223_MOSAiC_ACA_2020; P5_223_MOSAiC_ACA_2020_2008310301; P5_223_MOSAiC_ACA_2020_2009020501; P5_223_MOSAiC_ACA_2020_2009040601; P5_223_MOSAiC_ACA_2020_2009070701; P5_223_MOSAiC_ACA_2020_2009080801; P5_223_MOSAiC_ACA_2020_2009100901; P5_223_MOSAiC_ACA_2020_2009111001; P5_223_MOSAiC_ACA_2020_2009131101; Particle measurement system; PIP; PMS; POLAR 5; Precipitation imaging probe; Svalbard
    Type: Dataset
    Format: text/tab-separated-values, 40 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-29
    Description: Two airborne campaigns (AFLUX and MOSAiC-ACA) were conducted in spring 2019 and late summer 2020 to investigate low- and midlevel clouds and related atmospheric parameters in the central Arctic. The measurements aim at better understanding the role of Arctic clouds and their interactions with the surface - open ocean or sea ice - in light of amplified climate change in the Arctic. During the campaigns the Basler BT-67 research aircraft Polar 5 based in Svalbard (78.24 N, 15.49 E) equipped with a comprehensive in-situ cloud payload performed in total 24 flights over the Arctic ocean and in the Fram Strait. A combination of size spectrometers (CDP and CAS) and 2-dimensional imaging probes (CIP and PIP) covering the size range of Arctic cloud hydrometeors from 0.5µm to 6.2mm measured the total particle number concentration, the particle size distribution and the median volume diameter. Liquid water content and ice water content were measured with the Nevzorov bulk probe. The cloud water content (liquid and ice water content) from the Nevzorov probe is compared to the cloud water content derived from particle size measurements using consistent mass-dimension relationships. Here we give an overview of the microphysical cloud properties measured in spring and late summer in high northern latitudes at altitudes up to 4 km. We derive the temperature and altitude dependence of liquid, mixed phase and ice cloud properties and investigate their seasonal variability. Differences in cloud properties above the sea ice and the open ocean are examined, supporting the hypothesis of an enhanced median volume diameter over open ocean compared to clouds formed over the sea ice. The comprehensive data set on microphysical cloud properties enhances our understanding of cloud formation and mixed phase cloud processes over the Arctic ocean, it can be used to validate remote sensing retrievals and models and helps to assess the role of clouds for stronger impact of climate change in the Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-19
    Description: 〈jats:p〉Abstract. Airborne in situ cloud measurements were carried out over the northern Fram Strait between Greenland and Svalbard in spring 2019 and summer 2020. In total, 811 min of low-level cloud observations were performed during 20 research flights above the sea ice and the open Arctic ocean with the Polar 5 research aircraft of the Alfred Wegener Institute. Here, we combine the comprehensive in situ cloud data to investigate the distributions of particle number concentration N, effective diameter Deff, and cloud water content CWC (liquid and ice) of Arctic clouds below 500 m altitude, measured at latitudes between 76 and 83∘ N. We developed a method to quantitatively derive the occurrence probability of their thermodynamic phase from the combination of microphysical cloud probe and Polar Nephelometer data. Finally, we assess changes in cloud microphysics and cloud phase related to ambient meteorological conditions in spring and summer and address effects of the sea ice and open-ocean surface conditions. We find median N from 0.2 to 51.7 cm−3 and about 2 orders of magnitude higher N for mainly liquid clouds in summer compared to ice and mixed-phase clouds measured in spring. A southerly flow from the sea ice in cold air outbreaks dominates cloud formation processes at temperatures mostly below −10 ∘C in spring, while northerly warm air intrusions favor the formation of liquid clouds at warmer temperatures in summer. Our results show slightly higher N in clouds over the sea ice compared to the open ocean, indicating enhanced cloud formation processes over the sea ice. The median CWC is higher in summer (0.16 g m−3) than in spring (0.06 g m−3), as this is dominated by the available atmospheric water content and the temperatures at cloud formation level. We find large differences in the particle sizes in spring and summer and an impact of the surface conditions, which modifies the heat and moisture fluxes in the boundary layer. By combining microphysical cloud data with thermodynamic phase information from the Polar Nephelometer, we find mixed-phase clouds to be the dominant thermodynamic cloud phase in spring, with a frequency of occurrence of 61 % over the sea ice and 66 % over the ocean. Pure ice clouds exist almost exclusively over the open ocean in spring, and in summer the cloud particles are most likely in the liquid water state. The comprehensive low-level cloud data set will help us to better understand the role of clouds and their thermodynamic phase in the Arctic radiation budget and to assess the performance of global climate models in a region of the world with the strongest anthropogenic climate change. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-03
    Description: A new cloud microphysical scheme including a detailed parameterization for aerosol-driven ice formation in cirrus clouds is implemented in the global chemistry climate model EMAC and coupled to the aerosol submodel MADE3. The new scheme is able to consistently simulate three regimes of stratiform clouds (liquid, mixed- and ice-phase (cirrus) clouds), considering the impact of aerosol on the activation of cloud droplets and the nucleation of ice crystals. In the cirrus regime, it accounts for the competition between homogeneous and heterogeneous freezing for the available supersaturated water vapor, taking into account different types of ice-nucleating particles, whose specific ice-nucleating properties can be flexibly varied in the model setup. The new model configuration was tuned using satellite data to find the optimal set of parameters that reproduces the observations. A detailed evaluation is also performed comparing the model results for standard cloud and radiation variables with a comprehensive set of observations from satellite retrievals and in situ measurements. The performance of EMAC-MADE3 in this new coupled configuration is in line with similar global coupled models and with other global aerosol models featuring ice cloud parameterizations. Some remaining discrepancies, especially with regard to ice crystal number concentrations in cirrus, which are a common problem of this kind of models, need to be the subject of future investigations. To further demonstrate the readiness of the new model system for application studies, an estimate of the global anthropogenic aerosol radiative forcing is provided and discussed in the context of the CMIP5 results for the IPCC.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-01-21
    Description: Low-level clouds (LLC) cover a wide area of southern West Africa (SWA) during the summer monsoon months, and have an important cooling effect on the regional climate. Previous studies of these clouds have focused on modelling and remote sensing via satellite. We present the first comprehensive set of regional, in situ measurements of cloud microphysics, taken during June – July 2016, as part of the DACCIWA (Dynamics-Aerosol-Chemistry-Clouds Interactions in West Africa) campaign, assessing spatial and temporal variation in the properties of these clouds. LLC developed overnight and mean cloud cover peaked a few hundred kilometres inland around 10:00 local solar time (LST), before clouds began to dissipate and convection intensified in the afternoon. Additional sea breeze clouds developed near the coast in the late morning, reaching a maximum extent around 12:00 LST. Regional variation in LLC cover was largely determined by the modulation of the cool maritime inflow by the local orography, with peaks on the upwind side of hills and minima on the leeward sides. In the broad-scale cloud field, no lasting impacts related to anthropogenic aerosol were observed downwind of major population centres. The boundary layer cloud drop number concentration (CDNC) was locally variable inland, ranging from 200 to 840 cm−3 (10th and 90th percentiles at standard temperature and pressure), but showed no systematic regional variations. Enhancements were seen in pollution plumes from the coastal cities, but were not statistically significant across the region. The majority of accumulation mode aerosols, and therefore cloud condensation nuclei, were from ubiquitous biomass burning smoke transported from the southern hemisphere. Consequently, all clouds measured (inland and offshore) had significantly higher CDNC and lower effective radius than clouds over the remote south Atlantic from literature. A parcel model sensitivity analysis showed that doubling or halving local emissions only changed the calculated CDNC by 13–22 %, as the high background meant local emissions were a small fraction of total aerosol. As the population of SWA grows, local emissions are expected to rise. Biomass burning smoke transported from the southern hemisphere is likely to dampen any effect of these increased local emissions on cloud-aerosol interactions. An integrative analysis between local pollution and Central African biomass burning emissions must be considered when predicting anthropogenic impacts on the regional cloud field during the West African monsoon.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-04
    Description: Low-level clouds (LLCs) cover a wide area of southern West Africa (SWA) during the summer monsoon months and have an important cooling effect on the regional climate. Previous studies of these clouds have focused on modelling and remote sensing via satellite. We present the first comprehensive set of in situ measurements of cloud microphysics from the region, taken during June–July 2016, as part of the DACCIWA (Dynamics–aerosol–chemistry–cloud interactions in West Africa) campaign. This novel dataset allows us to assess spatial, diurnal, and day-to-day variation in the properties of these clouds over the region. LLCs developed overnight and mean cloud cover peaked a few hundred kilometres inland around 10:00 local solar time (LST), before clouds began to dissipate and convection intensified in the afternoon. Regional variation in LLC cover was largely orographic, and no lasting impacts in cloud cover related to pollution plumes were observed downwind of major population centres. The boundary layer cloud drop number concentration (CDNC) was locally variable inland, ranging from 200 to 840 cm−3 (10th and 90th percentiles at standard temperature and pressure), but showed no systematic regional variations. Enhancements were seen in pollution plumes from the coastal cities but were not statistically significant across the region. A significant fraction of accumulation mode aerosols, and therefore cloud condensation nuclei, were from ubiquitous biomass burning smoke transported from the Southern Hemisphere. To assess the relative importance of local and transported aerosol on the cloud field, we isolated the local contribution to the aerosol population by comparing inland and offshore size and composition measurements. A parcel model sensitivity analysis showed that doubling or halving local emissions only changed the calculated cloud drop number concentration by 13 %–22 %, as the high background meant local emissions were a small fraction of total aerosol. As the population of SWA grows, local emissions are expected to rise. Biomass burning smoke transported from the Southern Hemisphere is likely to dampen any effect of these increased local emissions on cloud–aerosol interactions. An integrative analysis between local pollution and Central African biomass burning emissions must be considered when predicting anthropogenic impacts on the regional cloud field during the West African summer monsoon.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-03-30
    Description: A new cloud microphysical scheme including a detailed parameterization for aerosol-driven ice formation in cirrus clouds is implemented in the global ECHAM/MESSy Atmospheric Chemistry (EMAC) chemistry–climate model and coupled to the third generation of the Modal Aerosol Dynamics model for Europe adapted for global applications (MADE3) aerosol submodel. The new scheme is able to consistently simulate three regimes of stratiform clouds – liquid, mixed-, and ice-phase (cirrus) clouds – considering the activation of aerosol particles to form cloud droplets and the nucleation of ice crystals. In the cirrus regime, it allows for the competition between homogeneous and heterogeneous freezing for the available supersaturated water vapor, taking into account different types of ice-nucleating particles, whose specific ice-nucleating properties can be flexibly varied in the model setup. The new model configuration is tuned to find the optimal set of parameters that minimizes the model deviations with respect to observations. A detailed evaluation is also performed comparing the model results for standard cloud and radiation variables with a comprehensive set of observations from satellite retrievals and in situ measurements. The performance of EMAC-MADE3 in this new coupled configuration is in line with similar global coupled models and with other global aerosol models featuring ice cloud parameterizations. Some remaining discrepancies, namely a high positive bias in liquid water path in the Northern Hemisphere and overestimated (underestimated) cloud droplet number concentrations over the tropical oceans (in the extratropical regions), which are both a common problem in these kinds of models, need to be taken into account in future applications of the model. To further demonstrate the readiness of the new model system for application studies, an estimate of the anthropogenic aerosol effective radiative forcing (ERF) is provided, showing that EMAC-MADE3 simulates a relatively strong aerosol-induced cooling but within the range reported in the Intergovernmental Panel on Climate Change (IPCC) assessments.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...