ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 588-595 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Using a Fourier–Bessel representation for the fluctuating (turbulent) electrostatic potential, an equation governing the sheared-flow modes in toroidal geometry is derived from the gyrokinetic Poisson equation, where both the adiabatic and nonadiabatic responses of the electrons are taken into account. It is shown that the principal geometrical effect on sheared-flow modes of the electrostatic potential is due to the flux-surface average of 1/B, where B is the magnetic field strength. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 5038-5050 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The edge-localized, high-confinement mode regime is of interest for future Tokamak reactors since high performance has been sustained for long durations. Experiments in the Joint European Tokamak [M. Keilhacker et al., Nuclear Fusion 39, 209 (1999)] have studied this regime using scans with the toroidal field and plasma current varied together in H, D, DT, and T isotopes. The local energy transport in more than fifty of these plasmas is analyzed, and empirical scaling relations are derived for energy transport coefficients during quasi-steady state conditions using dimensionless parameters. Neither the Bohm nor gyro-Bohm expressions give the shapes of the profiles. The scalings with β and ν* are in qualitative agreement with Ion Temperature Gradient theory. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 922-926 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Theory of E×B shear suppression of turbulence in toroidal geometry [Phys. Plasmas 2, 1648 (1995)] is extended to include fast time variations of the E×B flows often observed in nonlinear simulations of tokamak turbulence. It is shown that the quickly time varying components of the E×B flows, while they typically contribute significantly to the instantaneous E×B shearing rate, are less effective than the slowly time varying components in suppressing turbulence. This is because the shear flow pattern changes before eddies get distorted enough. The effective E×B shearing rate capturing this important physics is analytically derived and estimated from zonal flow statistics of gyrofluid simulation. This provides new insights into understanding recent gyrofluid and gyrokinetic simulations that yield a reduced, but not completely quenched, level of turbulence in the presence of turbulence-driven zonal flows. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A fully three-dimensional gyrokinetic particle code using magnetic coordinates for general geometry has been developed and applied to the investigation of zonal flows dynamics in toroidal ion-temperature-gradient turbulence. Full torus simulation results support the important conclusion that turbulence-driven zonal flows significantly reduce the turbulent transport. Linear collisionless simulations for damping of an initial poloidal flow perturbation exhibit an asymptotic residual flow. The collisional damping of this residual causes the dependence of ion thermal transport on the ion–ion collision frequency, even in regimes where the instabilities are collisionless. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Sheared rotation dynamics are widely believed to have significant influence on experimentally-observed confinement transitions in advanced operating modes in major tokamak experiments, such as the Tokamak Fusion Test Reactor (TFTR) [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)], with reversed magnetic shear regions in the plasma interior. The high-n toroidal drift modes destabilized by the combined effects of ion temperature gradients and trapped particles in toroidal geometry can be strongly affected by radially-sheared toroidal and poloidal plasma rotation. In previous work with the FULL linear microinstability code, a simplified rotation model including only toroidal rotation was employed, and results were obtained. Here, a more complete rotation model, which includes contributions from toroidal and poloidal rotation and the ion pressure gradient to the total radial electric field, is used for a proper self-consistent treatment of this key problem. Relevant advanced operating mode cases for TFTR are presented. In addition, the complementary problem of the dynamics of fluctuation-driven E×B flow is investigated by an integrated program of gyrokinetic simulation in annulus geometry and gyrofluid simulation in flux tube geometry. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 1858-1866 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A general paradigm, based on the concept of self-organized criticality (SOC), for turbulent transport in magnetically confined plasmas, has been recently suggested as an explanation for some of the apparent discrepancies between most theoretical models of turbulent transport and experimental observations of the transport in magnetically confined plasmas. This model describes the dynamics of the transport without relying on the underlying local fluctuation mechanisms. Computations based on a cellular automata realization of such a model have found that noise-driven SOC systems can maintain average profiles that are linearly stable (submarginal) and yet are able to sustain active transport dynamics. It is also found that the dominant scales in the transport dynamics in the absence of sheared flow are system scales rather than the underlying local fluctuation scales. The addition of sheared flow into the dynamics leads to a large reduction of the system-scale transport events and a commensurate increase in the fluctuation-scale transport events needed to maintain the constant flux. The dynamics of these models and the potential ramifications for transport studies are discussed. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 4658-4664 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An energy-conserving set of the nonlinear electrostatic gyrokinetic Vlasov and Poisson equations is derived for the first time in the presence of equilibrium E×B velocity uE∼vTi, via phase-space Lagrangian Lie-perturbation theory. In this general formulation, only the basic small parameter ε with ω/Ω∼k(parallel)/k⊥∼ε and δn/n0∼1/k⊥L∼ε, is used, while no device-specific expansion has been made. Here, L is the equilibrium scale length. For application to microturbulence in tokamak core transport barriers, an additional small ordering parameter δB≡Bθ/B(very-much-less-than)1 is utilized. This leads to a useful form of the nonlinear gyrokinetic system which is applicable to a realistic situation in which the gradient lengths of the equilibrium radial electric field and pressure are of the same order as the ion poloidal gyroradius. The ordering for fluctuations is also modified to δn/n0∼εδB(very-much-less-than)1/k⊥L∼δB for a better description of sub-mixing-length level fluctuations. uE/vTi∼δB and ρθi∼Lp put the pressure-gradient contribution to Er and the toroidal-flow contribution to Er at the same order. δB∼ε is shown to be a maximal ordering for studying the E×B flow shear suppression of turbulence. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 3640-3649 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A general methodology for describing the dynamics of transport near marginal stability is formulated. Marginal stability is a special case of the more general phenomenon of self-organized criticality. Simple, one field models of the dynamics of tokamak plasma self-organized criticality have been constructed, and include relevant features such as sheared mean flow and transport bifurcations. In such models, slow mode (i.e., large-scale, low-frequency transport events) correlation times determine the behavior of transport dynamics near marginal stability. To illustrate this, impulse response scaling exponents (z) and turbulent diffusivities (D) have been calculated for the minimal (Burgers') and sheared flow models. For the minimal model, z=1 (indicating ballistic propagation) and D∼(S20)1/3, where S20 is the noise strength. With an identically structured noise spectrum and flow with shearing rate exceeding the ambient decorrelation rate for the largest-scale transport events, diffusion is recovered with z=2 and D∼(S20)3/5. This indicates a qualitative change in the dynamics, as well as a reduction in losses. These results are consistent with recent findings from dimensionless scaling studies. Several tokamak transport experiments are suggested. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 188-199 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The rigorous formulation of the bounce-averaged equations is presented based upon the Poincaré–Cartan one-form and Lie perturbation methods. The resulting bounce-averaged Vlasov equation is Hamiltonian, and is thus suitable for the self-consistent simulation of low frequency electrostatic turbulence in the trapped ion mode regime. In the bounce-kinetic Poisson equation, the "neoclassical polarization density" arises from the difference between the bounce-averaged banana center and real trapped particle densities across a field line. This representation of the neoclassical polarization drift as a shielding term provides a systematic way to study the long term behavior of the turbulence driven E×B flow. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 242-247 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A simplified two-field nonlinear model for collisionless trapped-ion-mode turbulence has been derived from nonlinear bounce-averaged drift kinetic equations. The renormalized thermal diffusivity obtained from this analysis exhibits a Bohm-like scaling. A new nonlinearity associated with the neoclassical polarization density is found to introduce an isotope-dependent modification to this Bohm-like diffusivity. The asymptotic balance between the equilibrium variation and the finite banana width-induced reduction of the fluctuation potential leads to the result that the radial correlation length decreases with increasing plasma current. Other important conclusions from the present analysis include the predictions that (i) the relative density fluctuation level δn/n0 is lower than the conventional mixing length estimate, Δr/Ln; (ii) the ion temperature fluctuation level δTi/Ti significantly exceeds the density fluctuation level δn/n0; and (iii) the parallel ion velocity fluctuation level δvi(parallel)/vTi is expected to be negligible. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...