ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2019
    Description: Abstract We used data from 〉100 permanent and temporary seismic stations to investigate seismicity patterns related to the 1 April 2014 M8.1 Iquique earthquake in northern Chile. Applying a multistage automatic event location procedure to the seismic data, we detected and located ~19,000 foreshocks, aftershocks and background seismicity for one month preceding and nine month following the mainshock. Foreshocks skirt around the updip limit of the mainshock asperity; aftershocks occur mainly in two belts updip and downdip of it. The updip seismicity primarily locates in a zone of transitional friction on the megathrust and can be explained by preseismic stress loading due to slow‐slip processes and afterslip driven by increased Coulomb failure stress (CFS) due to the mainshock and its largest aftershock. Afterslip further south also triggered aftershocks and repeating earthquakes in several EW striking streaks. We interpret the streaks as markers of surrounding creep that could indicate a change in fault mechanics and may have structural origin, caused by fluid‐induced failure along presumed megathrust corrugations. Megathrust aftershocks terminate updip below the seaward frontal prism in the outer continental wedge that probably behaves aseismically under velocity‐strengthening conditions. The inner wedge locates further landward overlying the megathrust's seismogenic zone. Further downdip, aftershocks anticorrelate with the two major afterslip patches resolved geodetically and partially correlate with increased CFS, overall indicating heterogeneous frictional behavior. A region of sparse seismicity at ~40‐50 km depth is followed by the deepest plate interface aftershocks at ~55‐65 km depth, which occur in two clusters of significantly different dip.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...