ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 60 (1989), S. 3730-3733 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Both the Tokamak Fusion Test Reactor and the Joint European Torus, two large magnetic confinement fusion devices, will use high-powered tritium beams. The suggestion has been made that tritium consumption could be reduced if tritium is only fed into the plasma source and deuterium or hydrogen is used as the neutralization target by operating with deuterium or hydrogen fed independently into the neutralizer. We report on measurements we performed with deuterium and hydrogen, and of the beam contamination that occurs in such an operating mode.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Data from an E(parallel)B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutralizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarily due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3%–8% peak to peak. The effects of both phenomena on the injected neutral beam can be ameliorated by careful operation of the ion sources.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Energy flow within TFTR neutral beamlines is measured with a waterflow calorimetry system capable of simultaneously measuring the energy deposited within four heating beamlines (three ion sources each), or of measuring the energy deposited in a separate neutral beam test stand. Of the energy extracted from the ion source on the well-instrumented test stand, 99.5±3.5% can be accounted for. When the ion deflection magnet is energized, however, 6.5% of the extracted energy is lost. This loss is attributed to a spray of devious particles onto unmonitored surfaces. A 30% discrepancy is also observed between energy measurements on the internal beamline calorimeter and energy measurements on a calorimeter located in the test stand target chamber. Particle reflection from the flat plate calorimeter in the target chamber, which the incident beam strikes at a near-grazing angle of 12°, is the primary loss of this energy. A slight improvement in energy accountability is observed as the beam pulse length is increased. This improvement is attributed to systematic error in the sensitivity of the energy measurement to small fluctuations in the supply water temperature. An overall accuracy of 15% is estimated for the total power injected into TFTR. Contributions to this error are uncertainties in the beam neutralization efficiency, reionization and beam scrape-off in the drift duct, and fluctuations in the temperature of the supply water.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Results are given from the first comprehensive and complementary measurements using the final production U.S. Common Long Pulse Ion Sources mounted on both the TFTR neutral beam test beamline and the TFTR neutral beam injection system, with actual tokamak experimental conditions, power systems, controls, and operating methods. The set of diagnostics included water calorimetry, thermocouples, vacuum ionization gauges, photodiodes, neutron, gamma-ray, and charged particle spectroscopy, optical multichannel analysis, charge exchange spectroscopy, Rutherford backscatter spectroscopy, and implantation/secondary ion mass spectroscopy. These systems were used to perform complementary measurements of neutral beam species, impurities, spatial divergence, energy dispersion, pressure, and reionization. The measurements were performed either in the neutralizer region, where the beam contained both ions and neutrals, or in the region of the output neutral beam. The average of the neutral particle ratios in the range from 80 to 114 keV is D0[E]:D0[E/2]:D0[E/3]=53(5):27(4):20(4), where the quantities in parentheses are the average experimental uncertainties.The corresponding neutral power ratio is P0[E]:P0[E/2]:P0[E/3]=72(9):19(3):9(2). The half widths (1/e) in the horizontal plane for the full-, half-, and third-energy components were 0.26°, 0.34°, and 0.42°, respectively. The dispersions of the full-, half-, and third-energy components were 1.20 keV, 2.35 keV, and 2.26 keV, respectively. The carbon impurity concentration in a 80 keV D0 beam was not greater than 2×10−4 per D0 beam particle, and exhibited an apparent acceleration state of C+. The oxygen impurity concentration was less than 5×10−4 per D0 beam particle, and exhibited an apparent acceleration state of O+. A variety of vacuum conditions were observed depending on the operating conditions. Typically, pressures in the transition ducts were in the range from 0.3 to 0.7×10−5 Torr at the beginning of injection pulses, and reionized power losses were in the range from 0.75% to 1.5% of incident power. At the end of injection pulses, pressures in the transition ducts were in the range from 0.6 to 2×10−5 Torr and reionized power losses were in the range from 2% to 6% of incident power. This work describes generic results, new apparatus, and advances in measurement techniques for the optimization of tokamak neutral beam heating operations and the analysis of neutral beam heated plasmas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 1753-1756 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Use of heavy ions beams with ∼10 MeV/amu mass ∼200, and average charge state of 1+ has been proposed as a driver for heavy ion fusion. Stripping of the ion beam by background gas can lead to an increase in the space charge density of the beam, which may make focusing the intense ion beam onto small targets more complex. Knowledge of the electron loss cross sections is essential to understand and address the problem. Currently, there are no 10 MeV/amu mass=200, charge state=1 beams available, and the theories that calculate electron loss cross sections can be experimentally tested only by using available beams of somewhat lower energy and higher initial charge state. The charge state distribution of ions produced in single collisions of 3.4 MeV/amu Kr7+ and 3.4 MeV/amu Xe11+ in N2 have been measured at the Texas A&M Cyclotron Institute using a windowless gas cell. The charge states of the outgoing ions are determined by magnetic analysis using a position-sensitive microchannel-plate detector. The cross sections for single and multiple electron loss are determined, and the results indicate that substantial multiple-electron loss occurs. The relative cross section for loss of i+1 electrons is 0.3–0.7 times that for i electron loss. The average number of electrons removed per one collision (sum of the electron-weighted cross sections normalized to the total cross section) is 1.86 for Kr and 1.97 for Xe. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The mission of the National Spherical Torus Experiment (NSTX) is to extend the understanding of toroidal physics to low aspect ratio (R/a(similar, equals)1.25) in low collisionality regimes. NSTX is designed to operate with up to 6 MW of high harmonic fast wave (HHFW) heating and current drive, 5 MW of neutral beam injection (NBI) and co-axial helicity injection (CHI) for noninductive startup. Initial experiments focused on establishing conditions that will allow NSTX to achieve its aims of simultaneous high βt and high-bootstrap current fraction, and to develop methods for noninductive operation, which will be necessary for Spherical Torus power plants. Ohmic discharges with plasma currents up to 1 MA and with a range of shapes and configurations were produced. Density limits in deuterium and helium reached 80% and 120% of the Greenwald limit, respectively. Significant electron heating was observed with up to 2.3 MW of HHFW. Up to 270 kA of toroidal current for up to 200 ms was produced noninductively using CHI. Initial NBI experiments were carried out with up to two beam sources (3.2 MW). Plasmas with stored energies of up to 140 kJ and βt=21% were produced. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ohmic plasma size scans have been carried out in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)] to measure the influence of the major radius upon energy confinement. The major radius, minor radius, and aspect ratio were varied over wide ranges (R=2.08–3.2 m, a=0.4–0.9 m, and R/a=2.9–8.0) at constant qc. The energy confinement determined from kinetic diagnostics varies strongly with major radius. The data set is less well suited to determine minor radius scaling, but it appears to be distinctly weaker than the major radius scaling. The anomaly in ion thermal conductivity over neoclassical predictions appears to decline with increasing aspect ratio, which is a better ordering parameter for the magnitude of the anomaly than either the minor radius or the major radius. © 1994 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 596-600 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Large area 10×40-cm Lawrence Berkeley Laboratory "field-free'' ion sources were used during the first 2.5 yr of the neutral beam injection heating experiment on the tokamak fusion test reactor. Although these ion sources were located inside magnetic shielding structures, interference from tokamak magnetic fields prevented beam operation under certain conditions when using hydrogen. The fields causing this interference have been studied, and modifications which allow operation of such sources in these fields have been made.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The complete ion cyclotron range of frequency (ICRF) heating system for the Tokamak Fusion Test Reactor (TFTR) [Fusion Tech. 21, 1324 (1992)], consisting of four antennas and six generators designed to deliver 12.5 MW to the TFTR plasma, has now been installed. Recently a series of experiments has been conducted to explore the effect of ICRF heating on the performance of low recycling, supershot plasmas in minority and nonresonant electron heating regimes. The addition of up to 7.4 MW of ICRF power to full size (R∼2.6 m, a∼0.95 m), helium-3 minority, deuterium supershots heated with up to 30 MW of deuterium neutral-beam injection has resulted in a significant increase in core electron temperature (ΔTe=3–4 keV). Simulations of equivalent deuterium–tritium (D–T) supershots predict that such ICRF heating should result in an increase in βα(0)∼30%. Direct electron heating has been observed and has been found to be in agreement with theory. The ICRF heating has also been coupled to neutral-beam heated plasmas fueled by frozen deuterium pellets. In addition ICRF heated energetic ion tails have been used to simulate fusion alpha particles in high-recycling plasmas. Up to 11.4 MW of ICRF heating has been coupled into a hydrogen minority, high-recycling helium plasma and the first observation of the toroidal Alfvén eigenmode (TAE) instability driven by the energetic proton tail has been made in this regime.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Measurements of the toroidal rotation speed vφ(r) driven by neutral beam injection in tokamak plasmas and, in particular, simultaneous profile measurements of vφ, Ti, Te, and ne, have provided new insights into the nature of anomalous transport in tokamaks. Low-recycling plasmas heated with unidirectional neutral beam injection exhibit a strong correlation among the local diffusivities, χφ≈χi〉χe. Recent measurements have confirmed similar behavior in broad-density L-mode plasmas. These results are consistent with the conjecture that electrostatic turbulence is the dominant transport mechanism in the tokamak fusion test reactor tokamak (TFTR) [Phys. Rev. Lett. 58, 1004 (1987)], and are inconsistent with predictions both from test-particle models of strong magnetic turbulence and from ripple transport. Toroidal rotation speed measurements in peaked-density TFTR "supershots'' with partially unbalanced beam injection indicate that momentum transport decreases as the density profile becomes more peaked. In high-temperature, peaked-density plasmas the observed gradient scale length parameter ηtoti=d ln Ti/d ln ne correlates reasonably well with predictions of the threshold for exciting ion-temperature-gradient-driven turbulence (ITGDT), as would be expected for plasmas at marginal stability with respect to this strong transport mechanism. In L-mode plasmas where ITGDT is expected to be too weak to enforce marginal stability, ηtoti exceeds this threshold considerably. However, preliminary experiments have failed to observe a significant increase in ion heat transport when ηtoti was rapidly forced above ηc (the threshold for exciting ITGDT) using a perturbative particle source, as would have been expected for a plasma at marginal stability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...