ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 127 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Acoustic reciprocity theorems have proved their usefulness in the study of forward and inverse scattering problems. The reciprocity theorems in the literature apply to the two-way (i.e. total) wavefield, and are thus not compatible with one-way wave theory, which is often applied in seismic exploration. By transforming the two-way wave equation into a coupled system of one-way wave equations for downgoing and upgoing waves it appears to be possible to derive ‘one-way reciprocity theorems” along the same lines as the usual derivation of the ‘two-way reciprocity theorems'. However, for the one-way reciprocity theorems it is not directly obvious that the ‘contrast term’ vanishes when the medium parameters in the two different states are identical. By introducing a modal expansion of the Helraholtz operator, its square root can be derived, which appears to have a symmetric kernel. This symmetry property appears to be sufficient to let the contrast term vanish in the above-mentioned situation.The one-way reciprocity theorem of the convolution type is exact, whereas the one-way reciprocity theorem of the correlation type ignores evanescent wave modes. The extension to the elastodynamic situation is not trivial, but it can be shown relatively easily that similar reciprocity theorems apply if the (non-unique) decomposition of the elastodynamic two-way operator is done in such a way that the elastodynamic one-way operators satisfy similar symmetry properties to the acoustic one-way operators.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-10-01
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...