ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-02
    Description: Lithotectonic mapping, metamorphic observations and U–Pb zircon ages underpin a substantial revision of central Bhutan geology, notably a more extensive and continuous outcrop of the Tethyan Sedimentary Series (TSS) than previously mapped. Metamorphic grade in the TSS increases downward towards a basal north-vergent tectonic contact with the underlying Greater Himalayan Series (GHS), interpreted as a southward continuation of the South Tibetan Detachment (STD). Miocene ( c . 17–20 Ma) leucogranite sheets are associated with the STD in this region but appear to diminish southwards. Two leucogranite dykes that cross-cut TSS structures yield ages of 17.8 ± 0.2 and 17.9 ± 0.5 Ma. A 500 ± 4 Ma (U–Pb zircon) metamorphosed ash bed in the Pele La Group within the psammite-dominated lower TSS yields the first direct isotopic age for the TSS in the eastern Himalaya, confirming existing age constraints from detrital zircon and fossil studies. A continuation of the Paro metasedimentary unit underlying the GHS was mapped near Wangdue Phodrang. Our observations, notably the exposure of a wholly ductile STD so far south and the significance of large nappe-like structures in the TSS, prompt a major revision to the geological map of the Bhutan Himalaya and require a reassessment of tectonic interpretations of the Bhutan Himalaya. Supplementary materials: Zircon U–Pb geochronological data, sample locations and descriptions, features of analysed zircons, sample processing method and detailed analytical conditions are available at http://www.geolsoc.org.uk/SUP18876 .
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: 〈p〉A key aim of modern metamorphic geochronology is to constrain precise and accurate rates and timescales of tectonic processes. One promising approach in amphibolite and granulite-facies rocks links the geochronological information recorded in zoned accessory phases such as monazite to the pressure–temperature information recorded in zoned major rock-forming minerals such as garnet. Both phases incorporate rare earth elements (REE) as they crystallize and their equilibrium partitioning behaviour potentially provides a useful way of linking time to temperature. We report REE data from sub-solidus amphibolite-facies metapelites from Bhutan, where overlapping ages, inclusion relationships and Gd/Lu ratios suggest that garnet and monazite co-crystallized. The garnet–monazite REE relationships in these samples show a steeper pattern across the heavy (H)REE than previously reported. The difference between our dataset and the previously reported data may be due to a temperature-dependence on the partition coefficients, disequilibrium in either dataset, differences in monazite chemistry or the presence or absence of a third phase that competed for the available REE during growth. We urge caution against using empirically-derived partition coefficients from natural samples as evidence for, or against, equilibrium of REE-bearing phases until monazite–garnet partitioning behaviour is better constrained.〈/p〉 〈p〉〈b〉Supplementary material:〈/b〉 Trace element concentrations and data, detailed analytical information, field photographs, chemical maps and thin section information are available at 〈a href="https://doi.org/10.6084/m9.figshare.c.4044323"〉https://doi.org/10.6084/m9.figshare.c.4044323〈/a〉〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-15
    Description: Lithotectonic mapping, metamorphic observations and U–Pb zircon ages underpin a substantial revision of central Bhutan geology, notably a more extensive and continuous outcrop of the Tethyan Sedimentary Series (TSS) than previously mapped. Metamorphic grade in the TSS increases downward towards a basal north-vergent tectonic contact with the underlying Greater Himalayan Series (GHS), interpreted as a southward continuation of the South Tibetan Detachment (STD). Miocene ( c . 17–20 Ma) leucogranite sheets are associated with the STD in this region but appear to diminish southwards. Two leucogranite dykes that cross-cut TSS structures yield ages of 17.8 ± 0.2 and 17.9 ± 0.5 Ma. A 500 ± 4 Ma (U–Pb zircon) metamorphosed ash bed in the Pele La Group within the psammite-dominated lower TSS yields the first direct isotopic age for the TSS in the eastern Himalaya, confirming existing age constraints from detrital zircon and fossil studies. A continuation of the Paro metasedimentary unit underlying the GHS was mapped near Wangdue Phodrang. Our observations, notably the exposure of a wholly ductile STD so far south and the significance of large nappe-like structures in the TSS, prompt a major revision to the geological map of the Bhutan Himalaya and require a reassessment of tectonic interpretations of the Bhutan Himalaya. Supplementary materials: Zircon U–Pb geochronological data, sample locations and descriptions, features of analysed zircons, sample processing method and detailed analytical conditions are available at http://www.geolsoc.org.uk/SUP18876 .
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-09
    Description: A key aim of modern metamorphic geochronology is to constrain precise and accurate rates and timescales of tectonic processes. One promising approach in amphibolite and granulite-facies rocks links the geochronological information recorded in zoned accessory phases such as monazite to the pressure–temperature information recorded in zoned major rock-forming minerals such as garnet. Both phases incorporate rare earth elements (REE) as they crystallize and their equilibrium partitioning behaviour potentially provides a useful way of linking time to temperature. We report REE data from sub-solidus amphibolite-facies metapelites from Bhutan, where overlapping ages, inclusion relationships and Gd/Lu ratios suggest that garnet and monazite co-crystallized. The garnet–monazite REE relationships in these samples show a steeper pattern across the heavy (H)REE than previously reported. The difference between our dataset and the previously reported data may be due to a temperature-dependence on the partition coefficients, disequilibrium in either dataset, differences in monazite chemistry or the presence or absence of a third phase that competed for the available REE during growth. We urge caution against using empirically-derived partition coefficients from natural samples as evidence for, or against, equilibrium of REE-bearing phases until monazite–garnet partitioning behaviour is better constrained. Supplementary material: Trace element concentrations and data, detailed analytical information, field photographs, chemical maps and thin section information are available at https://doi.org/10.6084/m9.figshare.c.4044323
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-06-11
    Print ISSN: 0263-4929
    Electronic ISSN: 1525-1314
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...