ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 17 (1978), S. 482-485 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 18 (1979), S. 740-745 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Investigations into the relationship between sucrose hydrolysis, sorbitol formation and mineral ion concentration during bioethanol formation by Zymomonas mobilis 2716 revealed two distinct phenomena responsible for carbon flow diversion, a “sucrose effect” and a “salt effect”. Neither of the two phenomena affects sucrose hydrolysis, but they divert carbon flow of the fructose monomer leading to its own accumulation, sorbitol or oligosaccharide formation. Sucrose concentrations in excess of 15% (w/v) led to sorbitol formation, the level of which may exceed 2% (w/v) depending upon glucose accumulation during sucrose hydrolysis. Increasing mineral ion concentrations led initially to carbon losses and finally to fructose accumulation instead of sorbitol formation. This carbon loss can be corrected by the addition of invertase, which in turn leads to an increase in sorbitol, fructose and ethanol. Potassium and chloride are the dominant ions responsible for suppression of sorbitol formation and fructose uptake, encouraging oligosaccharide formation. These fructooligosaccharides must be of a type which can be converted to fructose, sorbitol and ethanol through the action of invertase. The requirement of invertase addition to prevent fructooligosaccharide formation is indirect evidence that Z. mobilis 2716 does not produce invertase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 22 (1985), S. 411-415 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Zymomonas mobilis was grown in batch concentrations between 200 and 400 g/l sucrose. The fermentation pattern revealed that the efficiency of sucrose hydrolysis dropped only from 94 to 78.6% whereas the efficiency with which the hydrolyzed products were converted to ethanol decreased from 94 to 43%. The ethanol yields were relatively constant for final concentrations which lay between 80 and 132 g/l. Fermentation times increased to 72 hours at the higher sucrose concentrations. Sorbitol and fructose were identified as the major by-products. Preliminary evidence suggests that the ratio between the two by-products depends on the pH of the culture medium. Results suggest the possibility of processes producing ethanol plus fructose, ethanol plus fructose and sorbitol, or ethanol plus sorbitol in a single-stage batch fermentation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Colony radial growth rates of Rhizopus oligosporus and Aspergillus oryzae were compared under various conditions on agar plates containing cassava starch. Both organisms grew well on cassava starch as their sole source of carbon and energy, although growth was stimulated by the addition of yeast extract and peptone. Neither organism utilized ungelatinized starch effectively. The optimum initial pH for R. oligosporus was 7, although good growth was obtained at pH 5 when ammonium sulfate was partially replaced by urea. A. oryzae grew well over a range of initial pH values from 5 to 8. Growth of R. oligosporus was inhibited by NaCl concentrations above 0.5% (w/v) while A. oryzae was unaffected up to 4% NaCl. The best colony radial growth rate obtained for R. oligosporus was 1.01 mm/h, which was far superior to that obtained for A. oryzae (0.29 mm/h). R. oligosporus was chosen as the more suitable organism for future studies of the protein enrichment of cassava by solid-state fermentation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 22 (1985), S. 405-410 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary A new single-batch fermentation process for the commercial production of ethanol from refined sucrose, raw sugar, sugar cane juice and sugar cane syrup has been developed using a highly adapted and efficient strain of Zymomonas mobilis. The process gives a 94–98% sucrose hydrolysis efficiency and a 95–98% ethanol conversion efficiency. Within 24–30 h, 200 g/l sucrose is converted to produce 95.5 g/l ethanol. Reinoculation is carried out from the fermented broth without the need for centrifugation or membrane filtration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 16 (1974), S. 1659-1673 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Immobilized beef liver catalase has been used in a flow reactor to decompose hydrogen peroxide; at the same time the catalase is inactivated by its substrate. A model has been developed which predicts this rate of decomposition of peroxide and inactivation of catalase. First order dependence on peroxide concentration is assumed. The model was verified by experiment for a range of operating conditions and then used to predict the effects of a change in operating variables.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 17 (1975), S. 1555-1559 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 1045-1055 
    ISSN: 0006-3592
    Keywords: hybridoma ; mechanical agitation ; metabolism ; FBS ; pluronic ; BSA ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Metabolic effects of the medium supplements, fetal bovine serum (FBS), Pluronic F68, and bovine serum albumin (BSA) were compared for agitated bioreactor cultures of hybridoma cells. Agitation speeds up to 600 rpm, without entrainment of gas bubbles by sparging or vortex formation, allowed examination of cell interactions with turbulent fluid forces. For cultures in FBS-supplemented RPMI media, there was no significant effect of intense turbulent fluid shear on cell growth, metabolism, or antibody, production. Serum-free cultures (Pluronic F68 or BSA supplements) at 600 rpm demonstrated greatly increased glycolysis rates during exponential growth relative to controls. Nutrient limitations caused increased rates of decline of the viable cell concentrations and a reduction in final antibody titers by around 70%. The Pluronic F68 and BSA supplements did not lead to cell protection by modifying metabolism under conditions of intense turbulent fluid shear. Supplementing the protein-free medium with FBS reduced glycolysis rates in exponential growth phase, but this did not prevent a high rate of viable cell decline and low antibody titers. We concluded that FBS does not have a metabolic effect on cells subjected to intense turbulent fluid shear. Although the agitation conditions employed in this study were more intense than generally required for agitated bioreactor culture of hybridomas, we have demonstrated the importance of considering metabolic effects of turbulent fluid forces on cultures using nutrient-rich basal media, in addition to the considerations of gas bubble effects described by other workers. © 1992 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 353-362 
    ISSN: 0006-3592
    Keywords: Rhizopus oligosporus ; fermentation ; starch ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A Semimechanistic mathematical model is developed which describes the growth of Rhizopus oligosporus in a model solid-state fermentation system. Equations are presented for the release of glucoamylase, the diffusion of glucoamylase, the hydrolysis of starch, the generation and diffusion of glucose, and the uptake of glucose and conversion into new biomass. Good agreement of the model with the experimental data was obtained only after the glucoamylase diffusivity and the maximum specific glucose uptake rate were altered from their originally determined values. The model recognizes the distributed nature of the solid-state fermentation and therefore is able to predict the concentration profiles of the system components within the substrate. The model provides an insight into the possible rate-limiting steps in solid-state fermentation - the generation of glucose within the substrate and the resulting availability of glucose at the surface.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...