ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2015-11-21
    Description: Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase ( HPRT ), we monitor the relative utilization of three DSBR pathways following cleavage by I-Sce I or CRISPR/Cas9 nucleases. For I-Sce I, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-Sce I and Cas9 induced markedly different DSBR profiles. Also, using an I-Sce I-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-Sce I derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-06-25
    Description: Cyclin-dependent kinase 1 (Cdk1) controls cell proliferation and is inhibited by promising anticancer agents, but its mode of action and the consequences of its inhibition are incompletely understood. Cdk1 promotes S- and M-phases during the cell-cycle but also suppresses endoreduplication, which is associated with polyploidy and genome instability. The complexity of Cdk1 regulation has made it difficult to determine whether these different roles require different thresholds of kinase activity and whether the surge of activity as inhibitory phosphates are removed at mitotic onset is essential for cell proliferation. Here, we have used chemical genetics in a human cell line to address these issues. We rescued cells lethally depleted of endogenous Cdk1 with an exogenous Cdk1 conferring sensitivity to one ATP analogue inhibitor (1NMPP1) and resistance to another (RO3306). At no 1NMPP1 concentration was mitosis in rescued clones prevented without also inducing endoreduplication, suggesting that these two key roles for Cdk1 are not simply controlled by different Cdk1 activity thresholds. We also rescued RO3306-resistant clones using exogenous Cdk1 without inhibitory phosphorylation sites, indicating that the mitotic surge of Cdk1 activity is dispensable for cell proliferation. These results suggest that the basic mammalian cycle requires at least some qualitative changes in Cdk1 activity and that quantitative increases in activity need not be rapid. Furthermore, the viability of cells that are unable to undergo rapid Cdk1 activation, and the strong association between endoreduplication and impaired proliferation, may place restrictions on the therapeutic use of a Cdk1 inhibitors.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...