ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Leipzig : Akad. Verl.-Ges.
    Associated volumes
    Call number: O 2026(21)
    In: Mathematik und ihre Anwendungen in Physik und Technik
    Type of Medium: Monograph available for loan
    Pages: XV, 642 S.
    Series Statement: Mathematik und ihre Anwendungen in Physik und Technik : Reihe A 21
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Éditions Universitaires d’Avignon
    Publication Date: 2022-01-31
    Description: Quelles leçons pouvons-nous tirer des arts équestres ? En quoi et pourquoi le cirque peut-il aider à nous éduquer ? Voilà autant d’enjeux profonds, presque existentiels, qu’Alexis Grüss et son fils Firmin ont présentés le 30 mai 2017 à l’Université d’Avignon. Ils lançaient ainsi le Pôle d’Action Culturelle Équestre (PACE) associant les savoir‑faire et les savoir-être d’une véritable dynastie d’artistes circassiens à la dynamique d’une université particulièrement attachée au monde de la culture. Par la rencontre de l’artiste et de l’étudiant, de l’écuyer et de l’universitaire, il s’agirait alors, comme le dit si bien Alexis Grüss, « d’élever notre intelligence sur la ruine de nos préjugés », pour mieux comprendre ce que signifie « éduquer ».
    Keywords: PN1560-1590 ; art équestre ; culture ; spectacle vivant ; éducation ; cirque ; dynastie circassienne ; entretien
    Language: French
    Format: image/png
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-10
    Description: In order to study the origin of the architectures of low-mass planetary systems, we perform numerical surveys of the evolution of pairs of coplanar planets in the mass range (1–4) M . These evolve for up to 2 10 7 yr under a range of orbital migration torques and circularization rates assumed to arise through interaction with a protoplanetary disc. Near the inner disc boundary, significant variations of viscosity, interaction with density waves or with the stellar magnetic field could occur and halt migration, but allow circularization to continue. This was modelled by modifying the migration and circularization rates. Runs terminated without an extended period of circularization in the absence of migration torques gave rise to either a collision, or a system close to a resonance. These were mostly first order with a few per cent terminating in second-order resonances. Both planetary eccentricities were small 〈0.1 and all resonant angles liberated. This type of survey produced only a limited range of period ratios and cannot reproduce Kepler observations. When circularization alone operates in the final stages, divergent migration occurs causing period ratios to increase. Depending on its strength the whole period ratio range between 1 and 2 can be obtained. A few systems close to second-order commensurabilities also occur. In contrast to when arising through convergent migration, resonant trapping does not occur and resonant angles circulate. Thus, the behaviour of the resonant angles may indicate the form of migration that led to near resonance.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-28
    Description: We study the three-dimensional evolution of a viscous protoplanetary disc which is perturbed by a passing star on a parabolic orbit. The aim is to test whether a single stellar flyby is capable to excite significant disc inclinations which would favour the formation of so-called misaligned planets. We use smoothed particle hydrodynamics to study inclination, disc mass and angular momentum changes of the disc for passing stars with different masses. We explore different orbital configurations for the perturber's orbit to find the parameter spaces which allow significant disc inclination generation. Prograde inclined parabolic orbits are most destructive leading to significant disc mass and angular momentum loss. In the remaining disc, the final disc inclination is only below 20°. This is due to the removal of disc particles which have experienced the strongest perturbing effects. Retrograde inclined parabolic orbits are less destructive and can generate disc inclinations up to 60°. The final disc orientation is determined by the precession of the disc angular momentum vector about the perturber's orbital angular momentum vector and by disc orbital inclination changes. We propose a sequence of stellar flybys for the generation of misalignment angles above 60°. The results taken together show that stellar flybys are promising and realistic for the explanation of misaligned Hot Jupiters with misalignment angles up to 60°.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-15
    Description: We study orbital inclination changes associated with the precession of a disc–planet system that occurs through gravitational interaction with a binary companion on an inclined orbit. We investigate whether this scenario can account for giant planets on close orbits highly inclined to the stellar equatorial plane. We obtain conditions for maintaining approximate coplanarity and test them with SPH-simulations. For parameters of interest, the system undergoes approximate rigid body precession with modest warping while the planets migrate inwards. Because of pressure forces, disc self-gravity is not needed to maintain the configuration. We consider a disc and a single planet for different initial inclinations of the binary orbit to the mid-plane of the combined system and a system of three planets for which migration leads to dynamical instability that reorders the planets. As the interaction is dominated by the time averaged quadrupole component of the binary's perturbing potential, results for a circular orbit can be scaled to apply to eccentric orbits. The system responded adiabatically when changes to binary orbital parameters occurred on time-scales exceeding the orbital period. Accordingly inclination changes are maintained under its slow removal. Thus, the scenario for generating high-inclination planetary orbits studied here, is promising.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-26
    Description: Author Correction: Prioritizing monitoring and conservation efforts for fish spawning aggregations in the U.S. Gulf of Mexico Author Correction: Prioritizing monitoring and conservation efforts for fish spawning aggregations in the U.S. Gulf of Mexico, Published online: 26 June 2018; doi:10.1038/s41598-018-28120-7 Author Correction: Prioritizing monitoring and conservation efforts for fish spawning aggregations in the U.S. Gulf of Mexico
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-04-13
    Description: We study the interaction between massive planets and a gas disc with a mass in the range expected for protoplanetary discs. We use smoothed particle hydrodynamics simulations to study the orbital evolution of a massive planet as well as the dynamical response of the disc for planet masses between 1 and 6 M J and the full range of initial relative orbital inclinations. We find that gap formation can occur for planets in inclined orbits as well as for coplanar orbits as expected. For given planet mass, a threshold relative orbital inclination exists under which a gap forms. This threshold increases with planet mass. Orbital migration manifest through a decreasing semimajor axis is seen in all cases. At high relative inclinations, the inclination decay rate increases for increasing planet mass and decreasing initial relative inclination as is expected from estimates based on dynamical friction between planet and disc. For an initial semimajor axis of 5 au and relative inclination of i 0  = 80°, the times required for the inclination to decay by 10° is ~10 6 and ~ 10 5 yr for 1 and 6 M J , respectively, these times scaling in the usual way for larger initial orbits. For retrograde planets, the inclination always evolves towards coplanarity with the disc, with the rate of evolution being fastest for orbits with i 0 -〉 180°. The indication is thus that, without taking account of subsequent operation of phenomena such as the Lidov–Kozai effect, planets with mass 1 M J initiated in circular orbits with semimajor axis ~5 au and i 0  ~ 90° might only just become coplanar, as a result of frictional effects, within the disc lifetime. In other cases highly inclined orbits will survive only if they are formed after the disc has mostly dispersed. Planets on inclined orbits warp the disc by an extent that is negligible for 1 M J but increases with increasing mass becoming quite significant for a planet of mass 6 M J . In that case, the disc can gain a total inclination of up to 15° together with a warped inner structure with an inclination of up to ~20° relative to the outer part. We also find a solid body precession of both the total disc angular momentum vector and the planet orbital momentum vector about the total angular momentum vector, with the angular velocity of precession decreasing with increasing relative inclination as expected in that case. Our results illustrate that the influence of an inclined massive planet on a protoplanetary disc can lead to significant changes of the disc structure and orientation which can in turn affect the orbital evolution of the planet significantly. A three-dimensional treatment of the disc is then essential in order to capture all relevant dynamical processes in the composite system.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 1926-01-01
    Print ISSN: 1618-2642
    Electronic ISSN: 1618-2650
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-06
    Description: Ecosystem-based fisheries-management (EBFM) is increasingly used in the United States (U.S.), including in the Gulf of Mexico (GOM). Producing distribution maps for marine organisms is a critical step in the implementation of EBFM. In particular, distribution maps are important inputs for many spatially-explicit ecosystem models, such as OSMOSE models, as well as for biophysical models used to predict annual recruitment anomalies due to oceanographic factors. In this study, we applied a recently proposed statistical modelling framework to produce distribution maps for: (i) younger juveniles (ages 0–1) of red snapper ( Lutjanus campechanus ), red grouper ( Epinephelus morio ), and gag ( Mycteroperca microlepis ), so as to be able to define the potential larval settlement areas of the three species in a biophysical model; and (ii) the functional groups and life stages represented in the OSMOSE model of the West Florida Shelf (“OSMOSE-WFS”). This statistical modelling framework consists of: (i) compiling a large database blending all of the encounter/non-encounter data of the GOM collected by the fisheries-independent and fisheries-dependent surveys using random sampling schemes, referred to as the “comprehensive survey database;” (ii) employing the comprehensive survey database to fit spatio-temporal binomial generalized linear mixed models (GLMMs) that integrate the confounding effects of survey and year; and (iii) using the predictions of the fitted spatio-temporal binomial GLMMs to generate distribution maps. This large endeavour allowed us to produce distribution maps for younger juveniles of red snapper, red grouper and gag and nearly all of the other functional groups and life stages represented in OSMOSE-WFS, at different seasons. Using Pearson residuals, the probabilities of encounter predicted by all spatio-temporal binomial GLMMs were demonstrated to be reasonable. Moreover, the results obtained for younger juvenile fish concur with the literature, provide additional insights into the spatial distribution patterns of these life stages, and highlight important future research avenues.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...