ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Series available for loan
    Series available for loan
    Hamburg : Inst. für Geophysik
    Associated volumes
    Call number: S 98.0335(4)
    In: Berichte aus dem Zentrum für Meeres- und Klimaforschung
    Type of Medium: Series available for loan
    Pages: 186 S.
    Series Statement: Berichte aus dem Zentrum für Meeres- und Klimaforschung : Reihe C, Geophysik 4
    Classification: A.2.7.
    Language: German
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In 1988, an extensive geophysical experiment was performed on the Lofoten passive continental margin, which was formed by the continental break-up between Greenland and northern Norway at 58 Ma. The geological units of the outer Lofoten margin are characterized by seaward-dipping reflectors (SDRs) and landward flood basalt, which extends up to 100 km landwards of SDRs. In this study, we obtain the P-wave velocity structure beneath the Lofoten Basin, the SDRs, and the landward flood basalt by use of ocean-bottom seismograph refraction profiling, and we also discuss the formation of the northern Norwegian passive continental margin.In the Lofoten Basin the crust is of oceanic type, consisting of sedimentary layers, oceanic laver 2 (4.9−5.5 km s−1), layer 3A (6.3−6.8 km s−1) and layer 3B (7.0−7.1 km s−1). Beneath the SDRs the crustal layers are identical to those of the Lofoten Basin, but the thickness of the lower crust, which represents the same velocity as layer 3B, increases to 5 km towards the continent side, and a high-velocity lower crustal layer (7.3 km s−1) is formed at the base of the crust. The ocean-continent transition zone is situated between the landward side of the SDRs and the northward continuation of the Vøring Plateau Escarpment. In this region the velocity of the lower crust gradually decreases and approaches the lower crustal velocity beneath the Lofoten Islands (6.8 km s−1). The model also indicates that the high-velocity layer disappears in this region. Comparing our model with the crustal structure on the Vøring margin, it is clear that the lower crustal body (≥7 km s−1) thickens southwards along the northern Norwegian continental margin. Recent results from petrological and geophysical studies of the generation of the oceanic crust have shown that increasing the temperature of the upwelling asthenospheric material increases the thickness of the oceanic crust. We interpret this as that the oceanic crust in the southern area in the Vøring-Lofoten margin was generated by hotter material than that of the northern area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0581
    Keywords: Ocean/continent transition ; Lofoten Margin ; volcanic passive margin ; refraction seismics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The Cenozoic margins of the Norwegian-Greenland Sea offer ideal conditions for passive margin studies. A series of structural elements, first observed on these margins, led to the concept of volcanic passive margins. Questions still remain about the development of such features and the location of the boundary between oceanic and continental crust. Despite the thin sediment cover of the margins, seismic reflection data are not able to image the deeper structures due to the occurrence of igneous rocks at shallow depth. This paper presents a 320-km long profile perpendicular to the strike of the main structural units of the Lofoten Margin in Northern Norway. A geological model is proposed, based on observations made with ocean bottom seismographs, which recorded seismic refraction data and wide angle reflections, along with a seismic reflection profile covering the same area. Ray-tracing was used to calculate a geophysical model from the shelf area into the Lofoten basin. The structures typical of a volcanic passive margin were found, showing that the Lofoten Margin was influenced by increased volcanic activity during its evolution. The ocean/continent transition is located in a 30-km wide zone landwards of the Vøring Plateau escarpment. The whole margin is underlain by a possibly underplated, high velocity layer. Evidence for a pre-rift sediment basin landwards of the escarpment, overlain by basalt flows, was seen. These structural features, related to extensive volcanism on the Lofoten Margin, are not as distinct as further south along the Norwegian Margin. Viewed in the light of the hot-spot theory of White and McKenzie (1989) the Lofoten Margin can be interpreted as a transitional type between volcanic and non-volcanic passive margin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-22
    Description: The Cenozoic margins of the Norwegian-Greenland Sea offer ideal conditions for passive margin studies. A series of structural elements, first observed on these margins, led to the concept of volcanic passive margins. Questions still remain about the development of such features and the location of the boundary between oceanic and continental crust. Despite the thin sediment cover of the margins, seismic reflection data are not able to image the deeper structures due to the occurrence of igneous rocks at shallow depth. This paper presents a 320-km long profile perpendicular to the strike of the main structural units of the Lofoten Margin in Northern Norway. A geological model is proposed, based on observations made with ocean bottom seismographs, which recorded seismic refraction data and wide angle reflections, along with a seismic reflection profile covering the same area. Ray-tracing was used to calculate a geophysical model from the shelf area into the Lofoten basin. The structures typical of a volcanic passive margin were found, showing that the Lofoten Margin was influenced by increased volcanic activity during its evolution. The ocean/continent transition is located in a 30-km wide zone landwards of the Vøring Plateau escarpment. The whole margin is underlain by a possibly underplated, high velocity layer. Evidence for a pre-rift sediment basin landwards of the escarpment, overlain by basalt flows, was seen. These structural features, related to extensive volcanism on the Lofoten Margin, are not as distinct as further south along the Norwegian Margin. Viewed in the light of the hot-spot theory of White and McKenzie (1989) the Lofoten Margin can be interpreted as a transitional type between volcanic and non-volcanic passive margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...