ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-07
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 241-246, doi:10.1175/2010JPO4557.1.
    Description: The vertical dispersion of a tracer released on a density surface near 1500-m depth in the Antarctic Circumpolar Current west of Drake Passage indicates that the diapycnal diffusivity, averaged over 1 yr and over tens of thousands of square kilometers, is (1.3 ± 0.2) × 10−5 m2 s−1. Diapycnal diffusivity estimated from turbulent kinetic energy dissipation measurements about the area occupied by the tracer in austral summer 2010 was somewhat less, but still within a factor of 2, at (0.75 ± 0.07) × 10−5 m2 s−1. Turbulent diapycnal mixing of this intensity is characteristic of the midlatitude ocean interior, where the energy for mixing is believed to derive from internal wave breaking. Indeed, despite the frequent and intense atmospheric forcing experienced by the Southern Ocean, the amplitude of finescale velocity shear sampled about the tracer was similar to background amplitudes in the midlatitude ocean, with levels elevated to only 20%–50% above the Garrett–Munk reference spectrum. These results add to a long line of evidence that diapycnal mixing in the interior middepth ocean is weak and is likely too small to dictate the middepth meridional overturning circulation of the ocean.
    Description: This material is based upon work supported by the National Science Foundation Grants OCE-0622825,OCE-0622670, OCE-0622630, and OCE-0623177.
    Keywords: Diapycnal mixing ; Currents ; Antarctica ; Ocean circulation ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-30
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 92 (2014): 75-84, doi:10.1016/j.dsr.2014.06.002.
    Description: The recently discovered East Greenland Spill Jet is a bottom-intensified current on the upper continental slope south of Denmark Strait, transporting intermediate density water equatorward. Until now the Spill Jet has only been observed with limited summertime measurements from ships. Here we present the first year-round mooring observations demonstrating that the current is a ubiquitous feature with a volume transport similar to the well-known plume of Denmark Strait overflow water farther downslope. Using reverse particle tracking in a high-resolution numerical model, we investigate the upstream sources feeding the Spill Jet. Three main pathways are identified: particles flowing directly into the Spill Jet from the Denmark Strait sill; particles progressing southward on the East Greenland shelf that subsequently spill over the shelfbreak into the current; and ambient water from the Irminger Sea that gets entrained into the flow. The two Spill Jet pathways emanating from Denmark Strait are newly resolved, and long-term hydrographic data from the strait verifies that dense water is present far onto the Greenland shelf. Additional measurements near the southern tip of Greenland suggest that the Spill Jet ultimately merges with the deep portion of the shelfbreak current, originally thought to be a lateral circulation associated with the sub-polar gyre. Our study thus reveals a previously unrecognized significant component of the Atlantic Meridional Overturning Circulation that needs to be considered to understand fully the ocean’s role in climate.
    Description: Support for this study was provided by the U.S. National Science Foundation (OCE-0726640, OCI-1088849, OCI-0904338), the German Federal Ministry of Education and Research (0F0651 D), and the Italian Ministry of University and Research through the RITMARE Flagship Project.
    Keywords: East Greenland Spill Jet ; Denmark Strait Overflow Water ; Atlantic meridional overturning circulation ; Shelf basin interaction
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-13
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Szuts, Z. B., Bower, A. S., Donohue, K. A., Girton, J. B., Hummon, J. M., Katsumata, K., Lumpkin, R., Ortner, P. B., Phillips, H. E., Rossby, H. T., Shay, L. K., Sun, C., & Todd, R. E. The scientific and societal uses of global measurements of subsurface velocity. Frontiers in Marine Science, 6, (2019): 358, doi:10.3389/fmars.2019.00358.
    Description: Ocean velocity defines ocean circulation, yet the available observations of subsurface velocity are under-utilized by society. The first step to address these concerns is to improve visibility of and access to existing measurements, which include acoustic sampling from ships, subsurface float drifts, and measurements from autonomous vehicles. While multiple programs provide data publicly, the present difficulty in finding, understanding, and using these data hinder broader use by managers, the public, and other scientists. Creating links from centralized national archives to project specific websites is an easy but important way to improve data discoverability and access. A further step is to archive data in centralized databases, which increases usage by providing a common framework for disparate measurements. This requires consistent data standards and processing protocols for all types of velocity measurements. Central dissemination will also simplify the creation of derived products tailored to end user goals. Eventually, this common framework will aid managers and scientists in identifying regions that need more sampling and in identifying methods to fulfill those demands. Existing technologies are capable of improving spatial and temporal sampling, such as using ships of opportunity or from autonomous platforms like gliders, profiling floats, or Lagrangian floats. Future technological advances are needed to fill sampling gaps and increase data coverage.
    Description: This work was supported by the National Science Foundation, United States, Grant Numbers 1356383 to ZBS, OCE 1756361 to ASB at the Woods Hole Oceanographic Institution, and 1536851 to KAD and HTR; the National Oceanographic and Atmospheric Administration, United States, Ocean Observations and Monitoring Division and Atlantic Oceanographic and Meteorological Laboratory to RL; Royal Caribbean Cruise Ltd., to PBO; the Australian Government Department of the Environment and Energy National Environmental Science Programme and Australian Research Council Centre of Excellence for Climate Extremes to HEP; and the Gulf of Mexico Research Initiative Grant V-487 to LS.
    Keywords: velocity ; ocean measurements ; subsurface ; database ; sampling network ; ADCP ; autonomous vehicle ; floats
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-05
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1041–1056, doi:10.1175/2010JPO4313.1.
    Description: Three autonomous profiling Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats were air deployed one day in advance of the passage of Hurricane Frances (2004) as part of the Coupled Boundary Layer Air–Sea Transfer (CBLAST)-High field experiment. The floats were deliberately deployed at locations on the hurricane track, 55 km to the right of the track, and 110 km to the right of the track. These floats provided profile measurements between 30 and 200 m of in situ temperature, salinity, and horizontal velocity every half hour during the hurricane passage and for several weeks afterward. Some aspects of the observed response were similar at the three locations—the dominance of near-inertial horizontal currents and the phase of these currents—whereas other aspects were different. The largest-amplitude inertial currents were observed at the 55-km site, where SST cooled the most, by about 2.2°C, as the surface mixed layer deepened by about 80 m. Based on the time–depth evolution of the Richardson number and comparisons with a numerical ocean model, it is concluded that SST cooled primarily because of shear-induced vertical mixing that served to bring deeper, cooler water into the surface layer. Surface gravity waves, estimated from the observed high-frequency velocity, reached an estimated 12-m significant wave height at the 55-km site. Along the track, there was lesser amplitude inertial motion and SST cooling, only about 1.2°C, though there was greater upwelling, about 25-m amplitude, and inertial pumping, also about 25-m amplitude. Previously reported numerical simulations of the upper-ocean response are in reasonable agreement with these EM-APEX observations provided that a high wind speed–saturated drag coefficient is used to estimate the wind stress. A direct inference of the drag coefficient CD is drawn from the momentum budget. For wind speeds of 32–47 m s−1, CD ~ 1.4 × 10−3.
    Description: The Office of Naval Research supported the development of the EM-APEX float system through SBIR Contract N00014-03-C-0242 to Webb Research Corporation and with a subcontract to APL-UW. Sanford and J. Girton were supported by the Office of Naval Research through GrantsN00014-04-1-0691 and N00014- 07-1-024, and J. Price was supported through Grant N00014-04-1-0109.
    Keywords: Hurricanes ; Ocean dynamics ; Profilers ; Air-sea interactions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-04
    Description: AirSWOT is an aircraft mounted instrument for measuring and imaging sea surface height (SSH), and it is similar to the SWOT (Surface Water Ocean Topography) instrument that will be deployed on a satellite in 2020. A field campaign was conducted in April 2015 to examine the performance of AirSWOT and to better understand how the measurement is affected by surface waves and currents. Supporting measurements were collected from the R/V Shana Rae, the R/V Fulmar, and a second aircraft (a Partenavia P68 operated by Aspen Helicopter, Oxnard,CA for UCSD/SIO). From 17-20 April 2015, the R/V Shana Rae, a 50-foot research vessel, was used for collection of Underway CTD (or UCTD) measurements and for deployment and recovery of three EM/APEX floats in a study area off the central California coast. The UCTD measurements are being used to estimate the sea surface height signal associated with variations in ocean density structure. The EM/APEX floats provide time series of the same, as well as vertical profiles of ocean velocity. The purpose of this report is to document the shipboard operations on the R/V Shana Rae and the resulting UCTD and EM/APEX data sets.
    Description: This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the United States Government under the prime Contract NNN12AA01C between the Caltech and NASA under subcontract number 1523706. Farrar and Girton were also supported by NASA Grants NNX13AD90G.
    Keywords: Shana Rae (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-18
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [citation], doi:[doi]. Swart, S., Gille, S. T., Delille, B., Josey, S., Mazloff, M., Newman, L., Thompson, A. F., Thomson, J., Ward, B., du Plessis, M. D., Kent, E. C., Girton, J., Gregor, L., Heil, P., Hyder, P., Pezzi, L. P., de Souza, R. B., Tamsitt, V., Weller, R. A., & Zappa, C. J. Constraining Southern Ocean air-sea-ice fluxes through enhanced observations. Frontiers in Marine Science, 6, (2019): 421, doi:10.3389/fmars.2019.00421.
    Description: Air-sea and air-sea-ice fluxes in the Southern Ocean play a critical role in global climate through their impact on the overturning circulation and oceanic heat and carbon uptake. The challenging conditions in the Southern Ocean have led to sparse spatial and temporal coverage of observations. This has led to a “knowledge gap” that increases uncertainty in atmosphere and ocean dynamics and boundary-layer thermodynamic processes, impeding improvements in weather and climate models. Improvements will require both process-based research to understand the mechanisms governing air-sea exchange and a significant expansion of the observing system. This will improve flux parameterizations and reduce uncertainty associated with bulk formulae and satellite observations. Improved estimates spanning the full Southern Ocean will need to take advantage of ships, surface moorings, and the growing capabilities of autonomous platforms with robust and miniaturized sensors. A key challenge is to identify observing system sampling requirements. This requires models, Observing System Simulation Experiments (OSSEs), and assessments of the specific spatial-temporal accuracy and resolution required for priority science and assessment of observational uncertainties of the mean state and direct flux measurements. Year-round, high-quality, quasi-continuous in situ flux measurements and observations of extreme events are needed to validate, improve and characterize uncertainties in blended reanalysis products and satellite data as well as to improve parameterizations. Building a robust observing system will require community consensus on observational methodologies, observational priorities, and effective strategies for data management and discovery.
    Description: SS was funded by a Wallenberg Academy Fellowship (WAF 2015.0186). EK was funded by the NERC ORCHESTRA Project (NE/N018095/1). LP was funded by the Advanced Studies in Oceanography of Medium and High Latitudes (CAPES 23038.004304/2014-28) and the Research Productivity Program (CNPq 304009/2016-4). BdS was a research associate at the F.R.S-FNRS. PeH was supported by the Australian Antarctic Science Projects 4301 and 4390, and the Australian Government’s Cooperative Research Centres Programme through the Antarctic Climate and Ecosystems Cooperative Research Centre and the International Space Science Institute Project 406. SG and MM were funded by National Science Foundation awards OCE-1658001 and PLR-1425989. AT was supported by NASA (NNX15AG42G) and NSF (OCE-1756956).
    Keywords: air-sea/air-sea-ice fluxes ; Southern Ocean ; ocean–atmosphere interaction ; climate ; ocean–ice interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-01-04
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L13604, doi:10.1029/2007GL029679.
    Description: An autonomous, profiling float called EM-APEX was developed to provide a quantitative and comprehensive description of the ocean side of hurricane-ocean interaction. EM-APEX measures temperature, salinity and pressure to CTD quality and relative horizontal velocity with an electric field sensor. Three prototype floats were air-deployed into the upper ocean ahead of Hurricane Frances (2004). All worked properly and returned a highly resolved description of the upper ocean response to a category 4 hurricane. At a float launched 55 km to the right of the track, the hurricane generated large amplitude, inertially rotating velocity in the upper 120 m of the water column. Coincident with the hurricane passage there was intense vertical mixing that cooled the near surface layer by about 2.2°C. We find consistent model simulations of this event provided the wind stress is computed from the observed winds using a high wind-speed saturated drag coefficient.
    Description: The development of the EM-APEX float system was supported by the Office of Naval Research through SBIR contract N00014-03-C-0242 to Webb Research Corporation and with a subcontract to APL-UW.
    Keywords: Hurricane-ocean interaction ; Wind stress and inertial motions ; Hurricane wake ; Numerical upper ocean model ; Instruments and methods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: image/tiff
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2017-11-22
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C01002, doi:10.1029/2005JC003139.
    Description: This study examines water property distributions in the deep South China Sea and adjoining Pacific Ocean using all available hydrographic data. Our analysis reveals that below about 1500 m there is a persistent baroclinic pressure gradient driving flow from the Pacific into the South China Sea through Luzon Strait. Applying hydraulic theory with assumptions of zero potential vorticity and flat bottom to the Luzon Strait yields a transport estimate of 2.5 Sv (1 Sv=106 m3 s-1). Some implications of this result include: (i) a residence time of less than 30 years in the deep South China Sea, (ii) a mean diapycnal diffusivity as large as 10-3 m2 s-1, and (iii) an abyssal upwelling rate of about 3×10-6 m s-1. These quantities are consistent with residence times based on oxygen consumption rates. The fact that all of the inflowing water must warm up before leaving the basin implies that this marginal sea contributes to the water mass transformations that drive the meridional overturning circulation in the North Pacific. Density distributions within the South China Sea basin suggest a cyclonic deep boundary current system, as might be expected for an overflow-driven abyssal circulation.
    Description: This study was supported by National Science Foundation (NSF) through Grant OCE00-95906 and by Japan Marine Science and Technology Center through its sponsorship of the International Pacific Research center (IPRRC). Support is also from NSF grant OCE-0325102.
    Keywords: Deepwater overflow ; South China Sea ; Pacific Ocean ; Luzon Strait
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-01-04
    Description: Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 2340-2349, doi:10.1175/JPO2969.1.
    Description: The overflow of dense water from the Nordic Seas through the Faroe Bank Channel (FBC) has attributes suggesting hydraulic control—primarily an asymmetry across the sill reminiscent of flow over a dam. However, this aspect has never been confirmed by any quantitative measure, nor is the position of the control section known. This paper presents a comparison of several different techniques for assessing the hydraulic criticality of oceanic overflows applied to data from a set of velocity and hydrographic sections across the FBC. These include 1) the cross-stream variation in the local Froude number, including a modified form that accounts for stratification and vertical shear, 2) rotating hydraulic solutions using a constant potential vorticity layer in a channel of parabolic cross section, and 3) direct computation of shallow water wave speeds from the observed overflow structure. Though differences exist, the three methods give similar answers, suggesting that the FBC is indeed controlled, with a critical section located 20–90 km downstream of the sill crest. Evidence of an upstream control with respect to a potential vorticity wave is also presented. The implications of these results for hydraulic predictions of overflow transport and variability are discussed.
    Description: The Faroe Bank Channel experiment was supported by NSF Grant OCE-9906736. JBG gratefully acknowledges the support of the NOAA/ UCAR Climate and Global Change Postdoctoral Program and NSF Grant OCE-9985840. Author Price was supported in part by the U.S. Office of Naval Research through Grant N00014-04-1-0109.
    Keywords: Deep water ; Dynamics ; Water masses
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-30
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 306–321, doi:10.1002/2016JC012007.
    Description: Using 111 shipboard hydrographic sections across Denmark Strait occupied between 1990 and 2012, we characterize the mean conditions at the sill, quantify the water mass constituents, and describe the dominant features of the Denmark Strait Overflow Water (DSOW). The mean vertical sections of temperature, salinity, and density reveal the presence of circulation components found upstream of the sill, in particular the shelfbreak East Greenland Current (EGC) and the separated EGC. These correspond to hydrographic fronts consistent with surface-intensified southward flow. Deeper in the water column the isopycnals slope oppositely, indicative of bottom-intensified flow of DSOW. An end-member analysis indicates that the deepest part of Denmark Strait is dominated by Arctic-Origin Water with only small amounts of Atlantic-Origin Water. On the western side of the strait, the overflow water is a mixture of both constituents, with a contribution from Polar Surface Water. Weakly stratified “boluses” of dense water are present in 41% of the occupations, revealing that this is a common configuration of DSOW. The bolus water is primarily Arctic-Origin Water and constitutes the densest portion of the overflow. The boluses have become warmer and saltier over the 22 year record, which can be explained by changes in end-member properties and their relative contributions to bolus composition.
    Description: US National Science Foundation (RP and DM) Grant Number: OCE-0959381; ;Norwegian Research Council Grant Number: 231647 (KV)
    Description: 2017-07-20
    Keywords: Bolus ; Denmark Strait Overflow Water ; North Icelandic Jet ; Hydrography ; East Greenland Current ; North Icelandic Irminger Current
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...