ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: Five shallow pressure gauges located in straits in the southern Indonesian islands wereused to evaluate tsunami signals triggered by the earthquakes off the northwest coast ofSumatra in December 2004 and the south coast of Java in July 2006. Tsunami wavesreached the pressure gauges around 5 to 6 hours after the 2004 earthquake; the largestwaves arrived 10 to 23 hours later, with amplitudes ranging from 9 to 25 cm. After the2006 earthquake, tsunami arrivals were only evident at the Ashmore and Roti pressuregauges in Timor Passage. At these two gauges, the first waves arrived around 2.25 hoursafter the earthquake, and the largest waves arrived 2 to 3 hours later, with amplitudes of6 and 18 cm. Spectral analysis shows an increase of energy in the 40- to 80-min-periodband during the 2004 tsunami, and at periods of 10 to 20 min in 2006. A simple raytracing model of both the 2004 and 2006 events, which approximates the tsunami as ashallow water wave, was used to evaluate the effect of topography on tsunami propagationin order to provide a physical explanation for the features observed in the pressuregauge data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-04
    Description: Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Comptes Rendus Geosciences 338 (2006): 1049-1062, doi:10.1016/j.crte.2006.05.014.
    Description: Bathymetry is foundational data, providing basic infrastructure for scientific, economic, educational, managerial, and political work. Applications as diverse as tsunami hazard assessment, communications cable and pipeline route planning, resource exploration, habitat management, and territorial claims under the Law of the Sea all require reliable bathymetric maps to be available on demand. Fundamental Earth science questions, such as what controls seafloor shape and how seafloor shape influences global climate, also cannot be answered without bathymetric maps having globally uniform detail. Current bathymetric charts are inadequate for many of these applications because only a small fraction of the seafloor has been surveyed. Modern multibeam echosounders provide the best resolution, but it would take more than 200 ship-years and billions of dollars to complete the job. The seafloor topography can be charted globally, in five years, and at a cost under $100M. A radar altimeter mounted on an orbiting spacecraft can measure slight variations in ocean surface height, which reflect variations in the pull of gravity caused by seafloor topography. A new satellite altimeter mission, optimized to map the deep ocean bathymetry and gravity field, will provide a global map of the world's deep oceans at a resolution of 6-9 km. This resolution threshold is critical for a large number of basic science and practical applications, including: • Determining the effects of bathymetry and seafloor roughness on ocean circulation, mixing, climate, and biological communities, habitats, and mobility. • Understanding the geologic processes responsible for ocean floor features unexplained by simple plate tectonics, such as abyssal hills, seamounts, microplates, and propagating rifts. • Improving tsunami hazard forecast accuracy by mapping the deep ocean topography that steers tsunami wave energy. • Mapping the marine gravity field to improve inertial navigation and provide homogeneous coverage of continental margins. • Providing bathymetric maps for numerous other practical applications, including reconnaissance for submarine cable and pipeline routes, improving tide models, and assessing potential territorial claims to the seabed under the United Nations Convention on the Law of the Sea.
    Description: This material is based upon work supported by the National Science Foundation under Grant No. 0326707
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 1037664 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-04
    Description: Author Posting. © Oceanography Society, 2004. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 17, 1 (2004): 65-74.
    Description: The seafloor is one of the critical controls on the ocean’s general circulation. Its influence comes through a variety of mechanisms including the contribution of mixing in the ocean’s interior through the generation of internal waves created by currents flowing over rough topography. The influence of topographic roughness on the ocean’s general circulation occurs through a series of connected processes. First, internal waves are generated by currents and tides flowing over topographic features in the presence of stratification. Some portion of these waves is sufficiently nonlinear that they immediately break creating locally enhanced vertical mixing. The majority of the internal waves radiate away from the source regions, and likely contribute to the background mixing observed in the ocean interior. The enhancement of vertical mixing over regions of rough topography has important implications for the abyssal stratification and circulation. These in turn have implications for the storage and transport of energy in the climate system, and ultimately the response of the climate system to natural and anthropogenic forcing. Finally, mixing of the stratified ocean leads to changes in sea level; these changes need to be considered when predicting future sea level.
    Description: SRJ was supported by the National Science Foundation under grant OCE-0241061 and an Office of Naval Research Young Investigator Award, LCS was supported by the Office of Naval Research under grant N00014-03-1-0307, and STG was supported by the National Science Foundation under grant OCE- 9985203/OCE-0049066 and by the National Aeronautics and Space Administration under JPL contract 1224031.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2017-01-04
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1995
    Description: Geosat altimeter data and numerical model output are used to examine the circulation and dynamics of the Antarctic Circumpolar Current (ACC). The mean sea surface height across the ACC has been reconstructed from height variability measured by the Geosat altimeter, without assuming prior knowledge of the geoid. For this study, an automated technique has been developed to estimate mean sea surface height for each satellite ground track using a meandering Gaussian jet model, and errors have been estimated using Monte Carlo simulation. The results are objectively mapped to produce a picture of the mean Subantarctic and Polar Fronts, which together comprise the major components of the ACC. The locations of the fronts are consistent with in situ observations and indicate that the fronts are substantially steered by bathymetry. The jets have an average Gaussian width of about 44 km in the meridional direction and meander about 75 km to either side of their mean locations. The width of the fronts is proportional to 1/f, indicating that with constant stratification, the width is proportional to the baroclinic. Rossby radius. The average height difference across the Subantarctic Front (SAF) is 0.7 m and across the Polar Front (PF) 0.6 m. The mean widths of the fronts are correlated with the size of the baroclinic Rossby radius. The meandering jet model explains between 40% and 70% of the height variance along the jet axes. Bathymetric constrictions are associated with increased eddy variability, a smaller percentage of which may be explained by the meandering of the ACC fronts, indicating that propagating eddies and rings may be spawned at topographic features. Detailed examination of spatial and temporal variability in the altimeter data indicates a spatial decorrelation scale of 85 km and a temporal e-folding scale of 34 days. The sea surface height variability is objectively mapped using these scales to define autocovariance functions. The resulting maps indicate substantial evidence of mesoscale eddy activity. Over 17-day time intervals, meanders of the PF and SAF appear to elongate, break off as rings, and propagate. Statistical analysis of ACC variability from altimeter data is conducted using empirical orthogonal functions (EOFs ). The first mode EOF describes 16% of the variance in total sea surface height across the ACC; reducing the domain into basin scales does not significantly increase the variance represented by the first EOF, suggesting that the scales of motion are relatively short, and may be determined by local instability mechanisms rather than larger basin scale processes. Likewise, frequency domain EOFs indicate no statistically significant traveling wave modes. The momentum balance of the ACC has been investigated using both output from a high resolution primitive equation model and sea surface height measurements from the Geosat altimeter. In the Semtner-Chervin general circulation model, run with approximately quarter-degree resolution and time varying ECMWF winds, topographic form stress is the dominant process balancing the surface wind forcing. Detailed examination of form stress in the model indicates that it is due to three large topographic obstructions located at Kerguelen Island, Campbell Plateau, and Drake Passage. In order to reduce the effects of standing eddies, the model momentum balance is considered in stream coordinates; vertically integrated through the entire water column, topographic form drag is the dominant balance for wind stress. However, at mid-depth the cross-stream momentum transfer is dominated by horizontal biharmonic friction. In the upper ocean, horizontal friction, mean momentum flux divergence, transient momentum flux divergence, and mean vertical flux divergence all contribute significantly to the momentum balance. Although the relative importance of individual terms in the momentum balance does not vary substantially along streamlines, elevated levels of eddy kinetic energy are associated with the three major topographic features. In contrast, altimeter data show elevated energy levels at many more topographic features of intermediate scales, suggesting that smaller topographic effects are better able to communicate with the surface in the real ocean than in the model. Transient Reynolds stress terms play a small role in the the overall momentum balance; nonetheless, altimeter and model measurements closely agree, and suggest that transient eddies tend to accelerate the mean flow, except in the region between the major fronts which comprise the ACC. Potential vorticity is considered in the model output along Montgomery streamfunction. Even at about 1000 m depth, it varies in response to wind forcing, largely as a result of changes in vertical stratification, indicating that forcing and dissipation do not locally balance in the Southern Ocean. In order to compare model and altimeter potential vorticity estimates, two different proxies for potential vorticity on surface streamlines are considered. Both proxies show very similar results for model and altimeter, suggesting that differences in surface streamlines estimated by the altimeter and the model are not significant in explaining the Southern Ocean flow. The proxies are both roughly conserved along surface height contours but undergo substantial jumps near topographic features. However, they cannot capture stratification changes which may be critically important to the overall potential vorticity balance.
    Description: Funding for this research was provided by an Office of Naval Research graduate student fellowship and National Aeronautics and Space Administration contract NAGW-1666.
    Keywords: Ocean currents ; Eddy flux
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-16
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cronin, M. F., Gentemann, C. L., Edson, J., Ueki, I., Bourassa, M., Brown, S., Clayson, C. A., Fairall, C. W., Farrar, J. T., Gille, S. T., Gulev, S., Josey, S. A., Kato, S., Katsumata, M., Kent, E., Krug, M., Minnett, P. J., Parfitt, R., Pinker, R. T., Stackhouse, P. W., Jr., Swart, S., Tomita, H., Vandemark, D., Weller, R. A., Yoneyama, K., Yu, L., & Zhang, D. Air-sea fluxes with a focus on heat and momentum. Frontiers in Marine Science, 6, (2019): 430, doi:10.3389/fmars.2019.00430.
    Description: Turbulent and radiative exchanges of heat between the ocean and atmosphere (hereafter heat fluxes), ocean surface wind stress, and state variables used to estimate them, are Essential Ocean Variables (EOVs) and Essential Climate Variables (ECVs) influencing weather and climate. This paper describes an observational strategy for producing 3-hourly, 25-km (and an aspirational goal of hourly at 10-km) heat flux and wind stress fields over the global, ice-free ocean with breakthrough 1-day random uncertainty of 15 W m–2 and a bias of less than 5 W m–2. At present this accuracy target is met only for OceanSITES reference station moorings and research vessels (RVs) that follow best practices. To meet these targets globally, in the next decade, satellite-based observations must be optimized for boundary layer measurements of air temperature, humidity, sea surface temperature, and ocean wind stress. In order to tune and validate these satellite measurements, a complementary global in situ flux array, built around an expanded OceanSITES network of time series reference station moorings, is also needed. The array would include 500–1000 measurement platforms, including autonomous surface vehicles, moored and drifting buoys, RVs, the existing OceanSITES network of 22 flux sites, and new OceanSITES expanded in 19 key regions. This array would be globally distributed, with 1–3 measurement platforms in each nominal 10° by 10° box. These improved moisture and temperature profiles and surface data, if assimilated into Numerical Weather Prediction (NWP) models, would lead to better representation of cloud formation processes, improving state variables and surface radiative and turbulent fluxes from these models. The in situ flux array provides globally distributed measurements and metrics for satellite algorithm development, product validation, and for improving satellite-based, NWP and blended flux products. In addition, some of these flux platforms will also measure direct turbulent fluxes, which can be used to improve algorithms for computation of air-sea exchange of heat and momentum in flux products and models. With these improved air-sea fluxes, the ocean’s influence on the atmosphere will be better quantified and lead to improved long-term weather forecasts, seasonal-interannual-decadal climate predictions, and regional climate projections.
    Description: EK was funded by the NERC CLASS Program (NE/R015953/1). CLG was funded by NASA grant 80NSSC18K0837. SG was funded by MEGAGRANT P220 program (#14.W03.31.0006).
    Keywords: air-sea heat flux ; latent heat flux ; surface radiation ; ocean wind stress ; autonomous surface vehicle ; OceanSITES ; ICOADS ; satellite-based ocean monitoring system
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-18
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [citation], doi:[doi]. Swart, S., Gille, S. T., Delille, B., Josey, S., Mazloff, M., Newman, L., Thompson, A. F., Thomson, J., Ward, B., du Plessis, M. D., Kent, E. C., Girton, J., Gregor, L., Heil, P., Hyder, P., Pezzi, L. P., de Souza, R. B., Tamsitt, V., Weller, R. A., & Zappa, C. J. Constraining Southern Ocean air-sea-ice fluxes through enhanced observations. Frontiers in Marine Science, 6, (2019): 421, doi:10.3389/fmars.2019.00421.
    Description: Air-sea and air-sea-ice fluxes in the Southern Ocean play a critical role in global climate through their impact on the overturning circulation and oceanic heat and carbon uptake. The challenging conditions in the Southern Ocean have led to sparse spatial and temporal coverage of observations. This has led to a “knowledge gap” that increases uncertainty in atmosphere and ocean dynamics and boundary-layer thermodynamic processes, impeding improvements in weather and climate models. Improvements will require both process-based research to understand the mechanisms governing air-sea exchange and a significant expansion of the observing system. This will improve flux parameterizations and reduce uncertainty associated with bulk formulae and satellite observations. Improved estimates spanning the full Southern Ocean will need to take advantage of ships, surface moorings, and the growing capabilities of autonomous platforms with robust and miniaturized sensors. A key challenge is to identify observing system sampling requirements. This requires models, Observing System Simulation Experiments (OSSEs), and assessments of the specific spatial-temporal accuracy and resolution required for priority science and assessment of observational uncertainties of the mean state and direct flux measurements. Year-round, high-quality, quasi-continuous in situ flux measurements and observations of extreme events are needed to validate, improve and characterize uncertainties in blended reanalysis products and satellite data as well as to improve parameterizations. Building a robust observing system will require community consensus on observational methodologies, observational priorities, and effective strategies for data management and discovery.
    Description: SS was funded by a Wallenberg Academy Fellowship (WAF 2015.0186). EK was funded by the NERC ORCHESTRA Project (NE/N018095/1). LP was funded by the Advanced Studies in Oceanography of Medium and High Latitudes (CAPES 23038.004304/2014-28) and the Research Productivity Program (CNPq 304009/2016-4). BdS was a research associate at the F.R.S-FNRS. PeH was supported by the Australian Antarctic Science Projects 4301 and 4390, and the Australian Government’s Cooperative Research Centres Programme through the Antarctic Climate and Ecosystems Cooperative Research Centre and the International Space Science Institute Project 406. SG and MM were funded by National Science Foundation awards OCE-1658001 and PLR-1425989. AT was supported by NASA (NNX15AG42G) and NSF (OCE-1756956).
    Keywords: air-sea/air-sea-ice fluxes ; Southern Ocean ; ocean–atmosphere interaction ; climate ; ocean–ice interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-18
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Smith, G. C., Allard, R., Babin, M., Bertino, L., Chevallier, M., Corlett, G., Crout, J., Davidson, F., Delille, B., Gille, S. T., Hebert, D., Hyder, P., Intrieri, J., Lagunas, J., Larnicol, G., Kaminski, T., Kater, B., Kauker, F., Marec, C., Mazloff, M., Metzger, E. J., Mordy, C., O'Carroll, A., Olsen, S. M., Phelps, M., Posey, P., Prandi, P., Rehm, E., Reid, P., Rigor, I., Sandven, S., Shupe, M., Swart, S., Smedstad, O. M., Solomon, A., Storto, A., Thibaut, P., Toole, J., Wood, K., Xie, J., Yang, Q., & WWRP PPP Steering Grp. Polar ocean observations: A critical gap in the observing system and its effect on environmental predictions from hours to a season. Frontiers in Marine Science, 6, (2019): 429, doi:10.3389/fmars.2019.00429.
    Description: There is a growing need for operational oceanographic predictions in both the Arctic and Antarctic polar regions. In the former, this is driven by a declining ice cover accompanied by an increase in maritime traffic and exploitation of marine resources. Oceanographic predictions in the Antarctic are also important, both to support Antarctic operations and also to help elucidate processes governing sea ice and ice shelf stability. However, a significant gap exists in the ocean observing system in polar regions, compared to most areas of the global ocean, hindering the reliability of ocean and sea ice forecasts. This gap can also be seen from the spread in ocean and sea ice reanalyses for polar regions which provide an estimate of their uncertainty. The reduced reliability of polar predictions may affect the quality of various applications including search and rescue, coupling with numerical weather and seasonal predictions, historical reconstructions (reanalysis), aquaculture and environmental management including environmental emergency response. Here, we outline the status of existing near-real time ocean observational efforts in polar regions, discuss gaps, and explore perspectives for the future. Specific recommendations include a renewed call for open access to data, especially real-time data, as a critical capability for improved sea ice and weather forecasting and other environmental prediction needs. Dedicated efforts are also needed to make use of additional observations made as part of the Year of Polar Prediction (YOPP; 2017–2019) to inform optimal observing system design. To provide a polar extension to the Argo network, it is recommended that a network of ice-borne sea ice and upper-ocean observing buoys be deployed and supported operationally in ice-covered areas together with autonomous profiling floats and gliders (potentially with ice detection capability) in seasonally ice covered seas. Finally, additional efforts to better measure and parameterize surface exchanges in polar regions are much needed to improve coupled environmental prediction.
    Description: The development of the new generation of floats (PRO-ICE) to be operated under ice was funded by the French project NAOS. Twelve PRO-ICE were funded by NAOS and nine by the Canadian Foundation for Innovation (FCI-30124). The GreenEdge project is funded by the following French and Canadian programs and agencies: ANR (Contract #111112), CNES (project #131425), IPEV (project #1164), CSA, Fondation Total, ArcticNet, LEFE and the French Arctic Initiative (GreenEdge project). The INTAROS project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under grant agreement No. 727890. The setup of the ArcMBA system and the experiment described in section “Quantitative Network Design” were funded by the European Space Agency through its support to science element (contract #4000117710/16/I-NB). SSw was supported by a Wallenberg Academy Fellowship (WAF 2015.0186). The work at CLS (GL, PPr, and PT) has been funded by internal investment, in relation with on-going CNES and ESA funded studies making use of radar data over Polar regions. EMODNET (BK) is funded by the European Commission. NRL Funding (for RA, JC, DH, EM, PPo, OS) provided by NRL Research Option “Determining the Impact of Sea Ice Thickness on the Arctic’s Naturally Changing Environment (DISTANCE), ONR 6.2 Data Assimilation and under program element 0602435N (JC, RA, DH). JT’s Arctic research activities are supported by the U.S. National Science Foundation and ONR. SG was funded by NSF grants/awards PLR-1425989 and OCE 1658001. IR is funded by contributors to the US IABP (including CG, DOE, NASA, NIC, NOAA, NSF, ONR). CAFS is supported by the NOAA ESRL Physical Sciences Division (AS and JI). LB and JX are funded by CMEMS. The WWRP PPP Steering Group is funded by a WMO trust fund with support from AWI for the ICO. The publication fee is provided by ECCC.
    Keywords: polar observations ; operational oceanography ; ocean data assimilation ; ocean modeling ; forecasting ; sea ice ; air-sea-ice fluxes ; YOPP
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-01-04
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 90 (2013): 4-14, doi:10.1016/j.dsr2.2013.03.041.
    Description: An austral winter cruise in July-August 2006 was conducted to study the winter circulation and iron delivery processes in the Southern Drake Passage and Bransfield Strait. Results from current and hydrographic measurements revealed a circulation pattern similar to that of the austral summer season observed in previous studies: The Shackleton Transverse Ridge (STR) in the southern Drake Passage blocks a part of the eastward Antarctic Circumpolar Current (ACC) which forces the ACC to detour southward, produces a Taylor Column over the STR, and forms an ACC jet within the Shackleton Gap, a deep channel between the STR and the shelf of Elephant Island. Observations show that to the west of the STR, the Upper Circumpolar Deep Water (UCDW) intruded onto the shelf around the South Shetland Islands while to the east of the STR, shelf waters were transported off the northern shelf of Elephant Island. Along a similar west-east transect approximately 50 km off the shelf, the northward transport of shelf waters was approximately 2.4 and 1.2 Sv in the austral winter and summer, respectively. The waters around Elephant Island primarily consist of the UCDW that has been modified by local cooling and freshening, unmodified UCDW that has recently intruded onto the shelf, and Bransfield Current water that is a mixture of shelf and Bransfield Strait waters. Weddell Sea outflows were observed which affect the hydrography and circulation in the Bransfield Strait and indirectly affect the circulation patterns in the southern Drake Passage and around Elephant Island. Two Fe enrichment and transport mechanisms are proposed that intrusions of the UCDW onto the northern shelf region of the South Shetland Islands is considered as the results of Ekman pumping due to prevailing westerly wind in the region while the offshelf transport of shelf waters in the shelf region east of Elephant Island is due to acquisition of positive vorticity by shelf waters from horizontal mixing with onshelf intruded ACC waters.
    Description: This project was supported by the National Science Foundation grant numbers OPP-0229966, ANT-0444040 and ANT-0948378 to M. Zhou, OPP0230445, ANT0443403 and ANT-0948357 to C. Measures, ANT0443869 and ANT-0948442 to M. Charette, and OPP0230443, ANT0444134 and ANT0948338 to B.G. Mitchell.
    Keywords: Southern Ocean ; Drake Passage ; Antarctic Circumpolar Current ; Shelf waters ; Mesoscale eddies ; Mixing ; Iron transport
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-01-10
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Quarterly Journal of the Royal Meteorological Society 143 (2017): 1434–1441, doi:10.1002/qj.3015.
    Description: Sea and land breeze circulations driven by surface temperature differences between land and sea often evolve into gravity currents with sharp fronts. Along narrow peninsulas, islands and enclosed seas, sea/land breeze fronts from opposing shorelines may converge and collide and may initiate deep convection and heavy precipitation. Here we investigate the collision of two sea breeze gravity current fronts in an analogue laboratory setting. We examine these collisions by means of ‘lock-exchange’ experiments in a rectangular channel. The effects of differences in gravity current density and height are studied. Upon collision, a sharp front separating the two currents develops. For symmetric collisions (the same current densities and heights) this front is vertical and stationary. For asymmetric collisions (density differences, similar heights) the front is tilted, changes shape in time and propagates in the same direction as the heavier current before the collision. Both symmetric and asymmetric collisions lead to upward displacement of fluid from the gravity currents and mixing along the plane of contact. The amount of mixing along the collision front decreases with asymmetry. Height differences impact post-collision horizontal propagation: there is significant propagation in the same direction as the higher current before collision, independent of density differences. Collisions of two gravity current fronts force sustained ascending motions which increase the potential for deep convection. From our experiments we conclude that this potential is larger in stationary collision fronts from symmetric sea breeze collisions than in propagating collision fronts from asymmetric sea breeze collisions.
    Description: National Science Foundation Grant Number: OCE-0824636; Office of Naval Research Grant Number: N00014-09-1-0844; National Aeronautics and Space Administration Grant Number: NASA NNX14A078G
    Keywords: Sea breeze ; Land breeze ; Gravity current ; Convergence ; Deep convection ; GFD ; Fluid dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-11-11
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 5002-5010, doi:10.1029/2017GL076909.
    Description: The Ocean Observatories Initiative air‐sea flux mooring deployed at 54.08°S, 89.67°W, in the southeast Pacific sector of the Southern Ocean, is the farthest south long‐term open ocean flux mooring ever deployed. Mooring observations (February 2015 to August 2017) provide the first in situ quantification of annual net air‐sea heat exchange from one of the prime Subantarctic Mode Water formation regions. Episodic turbulent heat loss events (reaching a daily mean net flux of −294 W/m2) generally occur when northeastward winds bring relatively cold, dry air to the mooring location, leading to large air‐sea temperature and humidity differences. Wintertime heat loss events promote deep mixed layer formation that lead to Subantarctic Mode Water formation. However, these processes have strong interannual variability; a higher frequency of 2 σ and 3 σ turbulent heat loss events in winter 2015 led to deep mixed layers (〉300 m), which were nonexistent in winter 2016.
    Description: NSF Grant Number: PLR-1425989; NSF Grant Number: OCE-1357072; NSF Grant Number: OCE-1658001; UK Natural Environment Research Council; ORCHESTRA Grant Number: NE/N018095/1
    Description: 2018-11-11
    Keywords: Southern Ocean ; Mixed layer ; Subantarctic Mode Water ; Air‐sea heat flux ; Mooring ; Interannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...