ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2018-01-05
    Description: Highlights • We image the deep structure of the Lesser Antilles Subduction Zone by MCS profiles. • The complex deformation of the outer forearc crust is induced by subducting ridges. • We discuss also the effect of the subducting compressive NAM–SAM Plate-boundary. • Along-strike variations of the seaward edge of the outer forearc crust are discovered. • The updip limit proxy of the seismogenic part reaches 20 km trenchwards than believed. Abstract We present the results from a new grid of deep penetration multichannel seismic (MCS) profiles over the 280-km-long north-central segment of the Lesser Antilles subduction zone. The 14 dip-lines and 7 strike-lines image the topographical variations of (i) the subduction interplate décollement, (ii) the top of the arcward subducting Atlantic oceanic crust (TOC) under the huge accretionary wedge up to 7 km thick, and (iii) the trenchward dipping basement of the deeply buried forearc backstop of the Caribbean upper plate. The four northernmost long dip-lines of this new MCS grid reveal several-kilometre-high topographic variations of the TOC beneath the accretionary wedge offshore Guadeloupe and Antigua islands. They are located in the prolongation of those mapped on the Atlantic seafloor entering subduction, such as the Barracuda Ridge. This MCS grid also provides evidences on unexpected huge along-strike topographical variation of the backstop basement and of the deformation style affecting the outer forearc crust and sediments. Their mapping clearly indicates two principal areas of active deformation in the prolongation of the major Barracuda and Tiburon ridges and also other forearc basement highs that correspond to the prolongation of smaller oceanic basement highs recently mapped on the Atlantic seafloor. Although different in detail, the two main deforming forearc domains share similarities in style. The imaged deformation of the sedimentary stratification reveals a time- and space-dependent faulting by successive warping and unwarping, which deformation can be readily attributed to the forearc backstop sweeping over the two obliquely-oriented elongated and localized topographical ridges. The induced faulting producing vertical scarps in this transport does not require a regional arc-parallel extensional regime as proposed for the inner forearc domain, and may support a partitioned tectonic deformation such as in the case of an outer forearc sliver. A contrasted reflectivity of the sedimentary layering at the transition between the outer forearc and accretionary domains was resolved and used to define the seaward edge of the outer forearc basement interpreted as being possibly a proxy to the updip limit of the interplate seismogenic zone. Its mapping documents along-arc variations of some tens of kilometres of the subduction backstop with respect to the negative gravity anomaly commonly taken as marking the subduction trench. With the exception of the southernmost part, the newly mapped updip limit reaches 25 km closer to the trench, thus indicating a possible wider seismogenic zone over almost the whole length of the study area.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-05
    Description: The 300-km-long north-central segment of the Lesser Antilles subduction zone, including Martinique and Guadeloupe islands has been the target of a specific approach to the seismic structure and activity by a cluster of active and passive offshore–onshore seismic experiments. The top of the subducting plate can be followed under the wide accretionary wedge by multichannel reflection seismics. This reveals the hidden updip limit of the contact of the upper plate crustal backstop onto the slab. Two OBS refraction seismic profiles from the volcanic arc throughout the forearc domain constrain a 26-km-large crustal thickness all along. In the common assumption that the upper plate Moho contact on the slab is a proxy of its downdip limit these new observations imply a three times larger width of the potential interplate seismogenic zone under the marine domain of the Caribbean plate with respect to a regular intra-oceanic subduction zone. Towards larger depth under the mantle corner, the top of the slab imaged fromthe conversions of teleseismic body-waves and the locations of earthquakes appearswith kinks which increase the dip to 10–20° under the forearc domain, and then to 60° from 70 km depth. At 145 km depth under the volcanic arc just north of Martinique, the 2007 M 7.4 earthquake, largest for half a century in the region, allows to document a deep slab deformation consistent with segmentation into slab panels. In relation with this occurrence, an increased seismic activity over the whole depth range provides a new focussed image thanks to the OBS and land deployments. A double-planed dipping slab seismicity is thus now resolved, as originally discovered in Tohoku (NE Japan) and since in other subduction zones. Two other types of seismic activity uniquely observed in Tohoku, are now resolved here: “supraslab” earthquakes with normal-faulting focal mechanisms reliably located in the mantle corner and “deep flat-thrust” earthquakes at 45 km depth on the interplate fault under the Caribbean plate forearc mantle. None such types of seismicity should occur under the paradigm of a regular peridotitic mantle of the upper plate which is expected to be serpentinized by the fluids provided from the dehydrating slab beneath. This process is commonly considered as limiting the downward extent of the interplate coupling. Interpretations are not readily available either for the large crustal thickness of this shallow water marine upper plate, except when remarking its likeness to oceanic plateaus formed above hotspots. The Caribbean Oceanic Plateau of the upper plate has been formed earlier by the material advection from a mantle plume. It could then be underlain by a correspondingly modified, heterogeneous mantle, which may include pyroxenitic material among peridotites. Such heterogeneity in the mantle corner of the present subduction zone may account for the notable peculiarities in seismic structure and activity and impose regions of stick-slip behavior on the interplate among stable-gliding areas.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-07-06
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2019-09-23
    Description: The NE dipping slab of the Hellenic subduction is imaged in unprecedented detail using teleseismic receiver function analysis on a dense 2-D seismic array. Mapping of slab geometry for over 300 km along strike and down to 100 km depth reveals a segmentation into dipping panels by along-dip faults. Resolved intermediate-depth seismicity commonly attributed to dehydration embrittlement is shown to be clustered along these faults. Large earthquakes occurrence within the upper and lower plate and at the interplate megathrust boundary show a striking correlation with the slab faults suggesting high mechanical coupling between the two plates. Our results imply that the general slab rollback occurs here in a differential piecewise manner imposing its specific stress and deformation pattern onto the overriding Aegean plate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-31
    Description: The NE dipping slab of the Hellenic subduction is imaged in unprecedented detail using teleseismic receiver-function analysis on a dense 2D seismic array. Mapping of slab geometry for over 300 km along-strike and down to 100 km depth reveals a segmentation into dipping panels by along-dip faults. Resolved intermediate-depth seismicity commonly attributed to dehydratation embrittlement is shown to be clustered along these faults. Large earthquakes occurrence within the upper and lower plate and at the interplate megathrust boundary show a striking correlation with the slab faults suggesting high mechanical coupling between the two plates. Our results imply that the general slab rollback occurs here in a differential piecewise manner imposing its specific stress and deformation pattern onto the overriding Aegean plate.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-08-29
    Description: Markov chain Monte Carlo sampling methods are widely used for non-linear Bayesian inversion where no analytical expression for the forward relation between data and model parameters is available. Contrary to the linear(ized) approaches, they naturally allow to evaluate the uncertainties on the model found. Nevertheless their use is problematic in high-dimensional model spaces especially when the computational cost of the forward problem is significant and/or the a posteriori distribution is multimodal. In this case, the chain can stay stuck in one of the modes and hence not provide an exhaustive sampling of the distribution of interest. We present here a still relatively unknown algorithm that allows interaction between several Markov chains at different temperatures. These interactions (based on importance resampling) ensure a robust sampling of any posterior distribution and thus provide a way to efficiently tackle complex fully non-linear inverse problems. The algorithm is easy to implement and is well adapted to run on parallel supercomputers. In this paper, the algorithm is first introduced and applied to a synthetic multimodal distribution in order to demonstrate its robustness and efficiency compared to a simulated annealing method. It is then applied in the framework of first arrival traveltime seismic tomography on real data recorded in the context of hydraulic fracturing. To carry out this study a wavelet-based adaptive model parametrization has been used. This allows to integrate the a priori information provided by sonic logs and to reduce optimally the dimension of the problem.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: ABSTRACT The main goal of this study is to assess the potential of evolutionary algorithms to solve highly non‐linear and multi‐modal tomography problems (such as first arrival traveltime tomography) and their abilities to estimate reliable uncertainties. Classical tomography methods apply derivative‐based optimization algorithms that require the user to determine the value of several parameters (such as regularization level and initial model) prior to the inversion as they strongly affect the final inverted model. In addition, derivative‐based methods only perform a local search dependent on the chosen starting model. Global optimization methods based on Markov Chain Monte Carlo that thoroughly sample the model parameter space are theoretically insensitive to the initial model but turn out to be computationally expensive. Evolutionary algorithms are population‐based global optimization methods and are thus intrinsically parallel, allowing these algorithms to fully handle available computer resources. We apply three evolutionary algorithms to solve a refraction traveltime tomography problem, namely the Differential Evolution, the Competitive Particle Swarm Optimization and the Covariance Matrix Adaptation ‐ Evolution Strategy. We apply these methodologies on a smoothed version of the Marmousi velocity model and compare their performances in terms of optimization and estimates of uncertainty. By performing scalability and statistical analysis over the results obtained with several runs, we assess the benefits and shortcomings of each algorithm. This article is protected by copyright. All rights reserved
    Print ISSN: 0016-8025
    Electronic ISSN: 1365-2478
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-01
    Print ISSN: 0098-3004
    Electronic ISSN: 1873-7803
    Topics: Geosciences , Computer Science
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-10-22
    Description: The variations of the arrival times and polarities with backazimuth and distance of teleseismic P-to-S converted waves at interfaces bounding the slab crust under the upper plate mantle are used to constrain the depth, dip angle and azimuth of the slab of the Hellenic subduction zone. A grid search is designed to estimate the model parameters. Dip values of 16–18°, with an azimuth of 20° to 40°, are thus derived at 3 sites aligned over 50 km along the eastern coast of Peloponnesus. They are consistent with the variation from 54 to 61 km of the slab top depths constrained below each receiver. North of the Gulfs of Corinth and Evvia, a similar depth for the top of the slab is found at a distance from the subduction at least 100 km larger. This suggests flatter subduction of a different slab segment. Such a variation in slab attitude at depth across the region from south of the eastern Gulf of Corinth to north of Evvia is a candidate for the control of the recent or active localized crustal thinning of the upper plate we documented in earlier work, and of the surface deformation.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...