ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 53 (2002), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Preferential flow needs self-dependent fluid mechanical characterization and quantification. A theoretical and experimental approach is presented to describe preferential flow with the three variables volume of flowing water and its kinetic energy and momentum. Two soils were irrigated at rates of 50, 75 and 100 mm hour−1 at one site and three times at 100 mm hour−1 at a second site. The variations of soil water content caused by irrigation were measured at five depths with horizontally installed TDR wave guides at 300-s intervals. The volume flux densities were calculated from the water balances. The computation of momentum and kinetic energy of preferential flow was based on the velocities of the wetting fronts and the amplitudes of the variations of soil water. Kinetic energy per unit volume of flow in the soil exceeds the one of irrigation by factors between 100 and 1000, which indicates concentration of flow. However, kinetic energy per unit volume of flow in the soil is less by factors of 106 to 108 than the capillary potential of soil water. Kinetic energy per unit volume of flow seems a reasonable variable for discriminating between preferential and ordinary flow at a threshold of 2 × 10−6 Pa.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-20
    Description: Infiltration is dominantly gravity driven, and a viscous-flow approach was developed. Laminar film flow equilibrates gravity with the viscous force and a constant flow velocity evolves during a period lasting 3/2 times the duration of a constant input rate, q S . Film thickness F and the specific contact area L of the film per unit soil volume are the key parameters. Sprinkler irrigation produced in situ time series of volumetric water contents, ( z , t ), as determined with TDR probes. The wetting front velocity v and the time series of the mobile water content, w ( z , t ) were deduced from ( z , t ). In vitro steady flow in a core of saturated soil provided volume flux density, q ( z , t ), and flow velocity, v , as determined from a heat front velocity. The F and L parameters of the in situ and the in vitro experiments were compared. The macropore-flow restriction states that, for a particular permeable medium, the specific contact area L must be independent from q S i.e., d L /d q S = 0. If true, then the relationship of q S v 3/2 could scale a wide range of input rates 0 ≤ q S ≤ saturated hydraulic conductivity, K sat , into a permeable medium, and kinematic-wave theory would become a versatile tool to deal with non-equilibrium flow. The viscous-flow approach is based on hydromechanical principles similar to Darcy’s law, but currently it is not suited to deduce flow properties from specified individual spatial structures of permeable media.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-12
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Soil Science Society of America (SSSA)
    Publication Date: 2017-02-17
    Description: Viscous flow theory expects sharp wetting shock fronts during infiltration in permeable media, but time domain reflectometry (TDR) measurements, using horizontally installed two-rod probes, reveal concave and convex increases at the early and late stages during the passing of the front, i.e., the TDR signals are S-shaped. Wetting front dispersal was initially considered as the cause, due to variations in the flow path lengths at the profile scale. However, later studies favored processes that are closer to the scale of the TDR control volume. In this study, an approach was developed that quantifies the shape of TDR signals exclusively with local features. It improves the determination of the arrival time of a wetting shock front at the depth of a TDR probe, and it ultimately supports the notion of sharp wetting shock fronts at the scale of the probe’s length that evolve during preferential infiltration.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1984-03-01
    Print ISSN: 0361-5995
    Electronic ISSN: 1435-0661
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-01-01
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-10-15
    Description: Prescribed burning is a forest management tool to reduce forest fire hazards. It is largely applied in the USA and is gaining importance worldwide, particularly in Europe. However, its effects on soils still have to be better understood. This study analyses the effects of two types of prescribed burnings (i.e. low and high burn severities of up to 200 °C and at or above 400 °C) on soil hydrophobicity, infiltration, and water storage capacity of top soils. Prescribed burnings were performed on four different plots in southern and western Catalonia, Spain. Soil samples were collected before and after burning to assess water repellency with the water drop penetration time (WDPT). Three rainfall simulations before burning and three after burning were executed on areas of 1 m2, and soil water contents at four to five depths were measured every 4 min during and after rainfall simulations using time domain reflectometry equipment (TDR). Following burning at both severities, water storage capacity of the top soil decreased between 1.7 and 5.4%vol on all four plots. No significant changes in volume flux density and velocity of the wetting fronts were discernible. Water drop penetration times increased moderately at the soil surface of the plots that were exposed to the high burn severity, and decreased slightly when burn severity was low. On two of the four plots the presence of partially moist organic litter prevented the underlying soil from excessive heating. Changes in hydrophobicity and water storage capacity of the top soil did not affect infiltration. Copyright © 2008 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-05-10
    Description: The focus is the experimental assessment of in-situ flow vectors in a hillslope soil. We selected a 100 m2 trenched hillslope study site. During prescribed sprinkling an obliquely installed TDR wave-guide provides for the velocity of the wetting front in its direction. A triplet of wave-guides mounted along the sides of an hypothetical tetrahedron, with its peak pointing down, produces a three-dimensional vector of the wetting front. The method is based on the passing of wetting fronts. We analysed 34 vectors along the hillslope at distributed locations and at soil depths from 11 cm (representing top soil) to 40 cm (close to bedrock interface). The mean values resulted as follows vx=16.1 mm min-1, vy=-0.2 mm min-1, and vz=11.9 mm min-1. The velocity vectors of the wetting fronts were generally gravity dominated and downslope orientated. Downslope direction (x-axis) dominated close to bedrock, whereas no preference between vertical and downslope direction was found in vectors close to the surface. The velocities along the contours (y-axis) varied widely. The Kruskal-Wallis tests indicated that the different upslope sprinkling areas had no influence on the orientation of the vectors. Vectors of volume flux density were also calculated for each triplet. The lateral velocities of the vector approach are compared with subsurface stromflow collected at the downhill end of the slope. Velocities were 25-140 times slower than lateral saturated tracer movements on top of the bedrock. Beside other points, we conclude that this method is restricted to non-complex substrate (skeleton or portion of big stones).
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-10-08
    Description: It is generally recognized that roots have an effect on infiltration. In this study we analysed the relation between root length distributions from Norway spruce (Picea abies (L.) Karst), silver fir (Abies alba Miller), European beech (Fagus sylvatica L.) and preferential infiltration in stagnic soils in the northern Pre-Alps in Switzerland. We conducted irrigation experiments (1 m2) and recorded water content variations with time domain reflectometry (TDR). A rivulet approach was applied to characterise preferential infiltration. Roots were sampled down to a depth of 0.5 to 1 m at the same position where the TDR-probes had been inserted and digitally measured. The basic properties of preferential infiltration, film thickness of mobile water and the contact length between soil and mobile water in the horizontal plane are closely related to root densities. An increase in root density resulted in an increase in contact length, but a decrease in film thickness. We modelled water content waves based on root densities and identified a range of root densities that lead to a maximum volume flux density and infiltration capacity. These findings provide convincing evidence that tree roots in stagnic soils represent the pore system that carries preferential infiltration. Thus, the presence of roots should improve infiltration.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-08-26
    Description: It is generally believed that roots have an effect on infiltration. In this study we analysed the influence of tree roots from Norway spruce (Picea abies (L.) Karst), silver fir (Abies alba Miller) and European beech (Fagus sylvatica L.) on preferential infiltration in stagnic soils in the northern pre-Alps in Switzerland. We conducted irrigation experiments (1 m2) and recorded water content variations with time domain reflectrometry (TDR). A rivulet approach was applied to characterise preferential infiltration. Roots were sampled down to a depth of 0.5 to 1 m at the same position where the TDR-probes had been inserted and digitally measured. The basic properties of preferential infiltration, film thickness of mobile water and the contact length between soil and mobile water in the horizontal plane are closely related to fine root densities. An increase in root density resulted in an increase in contact length, but a decrease in film thickness. We modelled water content waves based on fine root densities and identified a range of root densities that lead to a maximum volume flux density and infiltration capacity. These findings provide convincing evidence that tree roots improve soil structure and thus infiltration.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...