ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-05
    Description: Significant research has been underway for several years in NASA Glenn Research Center's nozzle branch to develop advanced computational methods for simulating turbulent flows in exhaust nozzles. The primary efforts of this research have concentrated on improving our ability to calculate the turbulent mixing layers that dominate flows both in the exhaust systems of modern-day aircraft and in those of hypersonic vehicles under development. As part of these efforts, a hybrid numerical method was recently developed to simulate such turbulent mixing layers. The method developed here is intended for configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. Interest in Large Eddy Simulation (LES) methods have increased in recent years, but applying an LES method to calculate the wide range of turbulent scales from small eddies in the wall-bounded regions to large eddies in the mixing region is not yet possible with current computers. As a result, the hybrid method developed here uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall-bounded regions entering a mixing section and uses a LES procedure to calculate the mixing-dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. With this technique, closure for the RANS equations is obtained by using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The LES equations are closed using the Smagorinsky subgrid scale model. Although the function of the Cebeci-Smith model to replace all of the turbulent stresses is quite different from that of the Smagorinsky subgrid model, which only replaces the small subgrid turbulent stresses, both are eddy viscosity models and both are derived at least in part from mixing-length theory. The similar formulation of these two models enables the RANS and LES equations to be solved with a single solution scheme and computational grid. The hybrid RANS-LES method has been applied to a benchmark compressible mixing layer experiment in which two isolated supersonic streams, separated by a splitter plate, provide the flows to a constant-area mixing section. Although the configuration is largely two dimensional in nature, three-dimensional calculations were found to be necessary to enable disturbances to develop in three spatial directions and to transition to turbulence. The flow in the initial part of the mixing section consists of a periodic vortex shedding downstream of the splitter plate trailing edge. This organized vortex shedding then rapidly transitions to a turbulent structure, which is very similar to the flow development observed in the experiments. Although the qualitative nature of the large-scale turbulent development in the entire mixing section is captured well by the LES part of the current hybrid method, further efforts are planned to directly calculate a greater portion of the turbulence spectrum and to limit the subgrid scale modeling to only the very small scales. This will be accomplished by the use of higher accuracy solution schemes and more powerful computers, measured both in speed and memory capabilities.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Only recently has computational fluid dynamics (CFD) been relied upon to predict the flow details of advanced nozzle concepts. Computer hardware technology and flow solving techniques are advancing rapidly and CFD is now being used to analyze such complex flows. Validation studies are needed to assess the accuracy, reliability, and cost of such CFD analyses. At NASA Lewis, the PARC2D/3D full Navier-Stokes (FNS) codes are being applied to HSR-type nozzles. This report presents the results of two such PARC FNS analyses. The first is an analysis of the Pratt and Whitney 2D mixer-ejector nozzle, conducted by Dr. Yunho Choi (formerly of Sverdrup Technology-NASA Lewis Group). The second is an analysis of NASA-Langley's axisymmetric single flow plug nozzle, conducted by the author.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 18-1 - 18-21; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Compensatory growth ; Grazing ; Nitrogen ; Production ; Tropics ; Rainfall
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We report the results of a pot experiment that examined the effects of three ecologically important factors controlling plant growth rates in savanna grasslands: defoliation, soil nitrogen and soil water availability. The experiment was conducted in the Amboseli region in east Africa, and was designed to simulate natural conditions as far as possible, using local soils and a grass species that is heavily grazed by abundant large herbivores. Productivity by different plant components was reduced, stimulated or unchanged by defoliation, depending on specific watering and fertilization treatments. Total above-ground production was stimulated by defoliation and was maximized at moderate clipping intensities, but this was statistically significant only when plants were watered infrequently (every 8 days), and most important, periods between clipping events were extended (at least 24 days). Under these conditions, plant growth rates were limited by water availability at the time of clipping, and soil water conserved in clipped, compared to unclipped plants. Within a given fertilization treatment, whole-plant production was never stimulated by defoliation because root growth was unaffected or inhibited by clipping. However, when fertilization was coupled to defoliation, as they are in the field, whole-plant production by fertilized and moderately clipped plants exceeded production by infertilized, unclipped plants. Under this interpretation, maximum whole-plant production coincided with optimum conditions for herbivores (maximum nitrogen concentration in grass leaves) when watering was frequent, and plants were moderately defoliated. However, these conditions were not the same as those that maximized relative above-ground stimulation of growth (infrequent watering and clipping). The results indicate that above-ground grass production can be stimulated by grazing, and when that is likely to occur. However, the results emphasize that plant production responses to defoliation can vary widely, contigent upon a complex interaction of ecological factors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: In the context of Large Eddy Simulations (LES), the effects of inflow turbulence are investigated through the Synthetic Eddy Method (SEM). The growth rate of a turbulent compressible mixing layer corresponding to operating conditions of GeobelDutton Case 2 is investigated herein. The effects of spanwise width on the growth rate of the mixing layer is investigated such that spanwise width independence is reached. The error in neglecting inflow turbulence effects is quantified by comparing two methodologies: (1) Hybrid-RANS-LES methodology and (2) SEM-LES methodology. Best practices learned from Case 2 are developed herein and then applied to a higher convective mach number corresponding to Case 4 experiments of GeobelDutton.
    Keywords: Aeronautics (General); Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN38252 , SciTech 2017; 9-13 Jan. 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-11
    Description: A computational study of the separated flow through a 2-D asymmetric subsonic diffuser has been performed. The Wind Computational Fluid Dynamics code is used to predict the separation and reattachment behavior for an incompressible diffuser flow. The diffuser inlet flow is a two-dimensional, turbulent, and fully-developed channel flow with a Reynolds number of 20,000 based on the centerline velocity and the channel height. Wind solutions computed with the Menter SST, Chien k-epsilon, Spalart-Allmaras and Explicit Algebraic Reynolds Stress turbulence models are compared with experimentally measured velocity profiles and skin friction along the upper and lower walls. In addition to the turbulence model study, the effects of grid resolution and use of wall functions were investigated. The grid studies varied the number of grid points across the diffuser and varied the initial wall spacing from y(sup +) = 0.2 to 60. The wall function study assessed the applicability of wall functions for analysis of separated flow. The SST and Explicit Algebraic Stress models provide the best agreement with experimental data, and it is recommended wall functions should only be used with a high level of caution.
    Keywords: Aerodynamics
    Type: NASA/TM-2005-213894 , E-15265
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-11
    Description: This study investigates the sidewall effect on flow within the mixing duct downstream of a lobed mixer-ejector nozzle. Simulations which model only one half-chute width of the ejector array are compared with those which model one complete quadrant of the nozzle geometry and with available experimental data. These solutions demonstrate the applicability of the half-chute technique to model the flowfield far away from the sidewall and the necessity of a full-quadrant simulation to predict the formation of a low-energy flow region near the sidewall. The quadrant solutions are further examined to determine the cause of this low-energy region, which reduces the amount of mixing and lowers the thrust of the nozzle. Grid resolution and different grid topologies are also examined. Finally, an assessment of the half-chute and quadrant approaches is made to determine the ability of these simulations to provide qualitative and/or quantitative predictions for this type of complex flowfield.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2005-213602 , E?15069 , HSR-071
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: The WIND code, a Reynolds-averaged Navier-Stokes solver used for a variety of aerospace flow simulations, was investigated for a Mach 2 nozzle at a series of nozzle stagnation temperatures. Comparisons of WIND calculations are made to experimental measurements of axial velocity, Mach number, and stagnation temperature along the jet centerline. The primary objective was to investigate the capabilities of the two-equation turbulence models available in WIND, version 4.0, for the analysis of heated supersonic nozzle flows. The models examined were the Menter Shear Stress Transport (SST) model and the Chien k-epsilon model, with and without the compressibility correction due to Sarkar. It was observed that all of the turbulence models investigated produced solutions that did not agree well with the experimental measurements. The effects of freestream Mach number and turbulent Prandtl number specifications were also investigated.
    Keywords: Aerodynamics
    Type: NASA/TM-2002-211727 , E-13478 , NAS 1.15:211727
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: A bypass transition model has been implemented in the Wind-US Reynolds Averaged Navier-Stokes (RANS) solver. The model is based on the Shear Stress Transport (SST) turbulence model and was built starting from a previous SST-based transition model. Several modifications were made to enable (1) consistent solutions regardless of flow field initialization procedure and (2) fully turbulent flow beyond the transition region. This model is intended for flows where bypass transition, in which the transition process is dominated by large freestream disturbances, is the key transition mechanism as opposed to transition dictated by modal growth. Validation of the new transition model is performed for flows ranging from incompressible to hypersonic conditions.
    Keywords: Aerodynamics
    Type: NASA/TM-2008-215451 , E-16671
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: The effects that the Orion parachutes have on the vehicle response once the vehicle lands on the ground are examined in this report. A concern with the Orion landing is that structural accelerations will cause vehicle and/or crew injuries or that the vehicle may roll over. The parachute effects are thought to have the potential of pulling the vehicle over during conditions such as higher winds or in some cases stabilizing the vehicle by preventing its motions after touchdown. A collection of representative landing conditions is used to assess the post-touchdown parachute release effect, and it was determined that, in general, there is no significant advantage or disadvantage to releasing the parachutes past the time when the vehicle touches ground. For landing conditions when there is a high horizontal wind, retaining the parachutes has a detrimental effect on vehicle rollover because the drag force on the parachutes pulls the vehicle over. Under this condition, some form of automated parachute release should be a requirement given that an attached parachute may cause the vehicle to roll over. An automated system would ensure that the release occur within 0.50 sec of touchdown (time when parachute regains tension), which is not enough time for a crew-operated manual release.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM--2008-215066 , E-16289
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Flows through three reference nozzles have been calculated to determine the capabilities and limitations of the widely used Navier-Stokes solver, PARC. The nozzles examined have similar dominant flow characteristics as those considered for supersonic transport programs. Flows from an inverted velocity profile (IVP) nozzle, an under expanded nozzle, and an ejector nozzle were examined. PARC calculations were obtained with its standard algebraic turbulence model, Thomas, and the two-equation turbulence model, Chien k-epsilon. The Thomas model was run with the default coefficient of mixing set at both 0.09 and a larger value of 0.13 to improve the mixing prediction. Calculations using the default value substantially underpredicted the mixing for all three flows. The calculations obtained with the higher mixing coefficient better predicted mixing in the IVP and underexpanded nozzle flows but adversely affected PARC's convergence characteristics for the IVP nozzle case. The ejector nozzle case did not converge with the Thomas model and the higher mixing coefficient. The Chien k-epsilon results were in better agreement with the experimental data overall than were those of the Thomas run with the default mixing coefficient, but the default boundary conditions for k and epsilon underestimated the levels of mixing near the nozzle exits.
    Keywords: AERODYNAMICS
    Type: NASA-TM-106551 , E-8703 , NAS 1.15:106551 , AIAA PAPER 94-3212 , Joint Propulsion Conference; 27-29 Jun. 1994; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...