ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  [Other] In: 17. Workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP), 14.-21.09.2014, Kastoria, Greece .
    Publication Date: 2014-12-19
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  [Talk] In: 8. Congress of the Hellenic Ecological Society, 20.-23.10.2016, Thessaloniki, Greece .
    Publication Date: 2016-12-15
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-15
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-01
    Description: In a literature search, the presence of Haematococcus in phytoplankton communities and its biogeography were investigated. Haematococcus, although showing a wide biogeographical distribution, has been rarely found in phytoplankton communities. Simultaneously, the colonization potential of air-dispersed Haematococcus in ephemeral waters and its interactions with coexisting phytoplankton taxa were examined by microscopy and molecular methods. Haematococcus was a successful colonist, appearing among the first taxa in the experimental containers. According to principal component analysis, Haematococcus growth rate was negatively correlated with the abundance and species richness of the other autotrophs. Furthermore, a negative correlation between Haematococcus and Chlamydomonas and a positive one between Haematococcus and Chlorella were found. Overall, Haematococcus appears to be an effective air-dispersed alga that can successfully colonize and establish populations in small ephemeral water bodies. However, its absence from phytoplankton in larger permanent water bodies could be related to its high light requirements, its competitive disadvantages against other algae, and the grazing pressures from predators. The results of our study suggest a life strategy based on adaptation to higher light intensities in very shallow waters compared with optical dense lakes. Therefore, ephemeral waters are the regular habitat for Haematococcus instead of being “stepping stones” for the colonization of lake phytoplankton.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-12
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: Highlights: • Airborne bacterial abundance, biomass and composition were studied in Thessaloniki. • The highest values of bacterial abundance were recorded during summer. • No significant seasonal differences were found between summer and winter. • Air temperature was found to significantly affect the airborne bacterial community. • The majority of OTUs were affiliated to taxa derived from soil and wastewater. Abstract: The abundance, biomass and the taxonomic composition of the total airborne bacterial communities in a coastal urban area of Northeastern Mediterranean Sea were examined. In total, 27 air samples were collected across three seasons from a sampling point of approximately 30 m altitude in the center of the city. The abundance and biomass were determined with the use of epifluorescent microscopy, while the taxonomic composition was characterized by next-generation sequencing methods. Overall, the highest values of bacterial abundance were recorded during summer, with values exceeding abundances recorded in other urban sites across Europe, reaching 41 × 104 cells m−3. Out of 6 core meteorological parameters, only air temperature was found to significantly affect the abundance and biomass of airborne bacteria. Concerning the taxonomic composition of the airborne bacterial community, the group of Proteobacteria was the most diverse, with 47% of the total number of OTUs belonging to them, followed by Firmicutes, Actinobacteria and Bacteroidetes. The most dominant OTU belonged to γ-Proteobacteria, and was closely affiliated to Pseudomonas sp., a taxon commonly found to actively participate in the formation of ice-nuclei in the atmosphere. Finally, 19 OTUs were shared between all seasons and were found to be among the most dominant overall. The majority of these OTUs were affiliated to genera from soil and wastewater origin, while several were affiliated to genera that include known or opportunistic pathogens. Yet, only rare OTUs were affiliated to taxa with possible marine origin (e.g. Synechococcus sp.). The results showed that the atmosphere of the study area harbors a diverse and abundant bacterial community.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-06
    Description: Climate change has been altering the ocean environment, affecting as a consequence the biological communities including microorganisms. We performed a mesocosm experiment to test whether biodiversity loss caused by one stressor would influence plankton community sensitivity to a subsequent stressor, as envisioned in Vinebrooke's multiple stressor concept. A natural Baltic Sea diatom-dominated phytoplankton assemblage was used as a model system where we examined whether a preceding heat shock would affect the community's response to changing salinity. Initially, the community was treated by a short-term temperature increase of 6 °C, which resulted in a loss of species compared to the control. Thereafter, the control and the heat-shocked communities were subject to a salinity change (- 5 psu, control, + 5 psu). The species Skeletonema dohrnii, Thalassiosira anguste-lineata, Thalassiosira nordenskioeldii, Chaetoceros socialis and Ditylum brightwellii were major components of the control and heat-shocked assemblages (〉 80% of the total biomass). We examined the effect on species composition and biodiversity (morphospecies and operational taxonomic units (OTUs) related to phytoplankton) and on phytoplankton biomass. In addition, we explored the single species response of five dominant diatoms on these environmental perturbations. Our results showed that increased salinity significantly reduced the OTUs richness both in the control and the less diverse heated community as well as the phytoplankton biomass in the heated community. On the other hand, decreased salinity significantly increased species richness and phytoplankton biomass in both communities and OTUs richness in the control community. The five dominant diatoms reached their highest biomass under decreased salinity and responded negatively to increased salinity (lower biomass than ambient salinity). Contrary to Vinebrooke's multiple stressor concept, there was no indication that the heat treatment had altered the community's sensitivity to the salinity stress in our study system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Journal of Plankton Research, 39 (3). pp. 494-508.
    Publication Date: 2020-02-06
    Description: Phytoplankton cell or colony sizes range from 〈1 µm to several cm, i.e. 4–5 orders of magnitude in linear dimensions, which is roughly equivalent to the log-size span within terrestrial vegetation. It is commonplace to assume that smaller phytoplankton have an advantage in growth related traits while larger ones are more resistant to losses. However, the current state of literature calls for a more differentiated view. It is still controversial, whether smaller phytoplankton have higher maximal growth rates (µmax) or if there is a peak of µmax at intermediate size (102 µm3 cell volume). Smaller phytoplankton have an advantage in nutrient acquisition at low concentrations while larger phytoplankton have an advantage in utilizing nutrient pulses and exploiting vertical gradients. At equal density, larger phytoplankton experience bigger sinking losses. Small phytoplankton (〈5–10 µm) are more affected mostly from grazing by protists and tunicates, while larger phytoplankton are more affected by copepod and krill grazing. Size spectra within the most important higher taxa show some conspicuous differences between marine and lake phytoplankton, e.g. the absence of very large diatoms (〉105 µm3) in lake phytoplankton and the absence of large (〉103 µm3) green algae in marine plankton. Overall, size is one of the most important traits for the performance of phytoplankton, but it is overly simplistic to equate small size with metabolic advantages
    Type: Article , PeerReviewed
    Format: text
    Format: image
    Format: image
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Cambridge Philosophical Society
    In:  Biological Reviews, 92 (2). pp. 1011-1026.
    Publication Date: 2020-02-06
    Description: Global warming has revitalized interest in the relationship between body size and temperature, proposed by Bergmann's rule 150 years ago, one of the oldest manifestations of a ‘biogeography of traits’. We review biogeographic evidence, results from clonal cultures and recent micro- and mesocosm experiments with naturally mixed phytoplankton communities regarding the response of phytoplankton body size to temperature, either as a single factor or in combination with other factors such as grazing, nutrient limitation, and ocean acidification. Where possible, we also focus on the comparison between intraspecific size shifts and size shifts resulting from changes in species composition. Taken together, biogeographic evidence, community-level experiments and single-species experiments indicate that phytoplankton average cell sizes tend to become smaller in warmer waters, although temperature is not necessarily the proximate environmental factor driving size shifts. Indirect effects via nutrient supply and grazing are important and often dominate. In a substantial proportion of field studies, resource availability is seen as the only factor of relevance. Interspecific size effects are greater than intraspecific effects. Direct temperature effects tend to be exacerbated by indirect ones, if warming leads to intensified nutrient limitation or copepod grazing while ocean acidification tends to counteract the temperature effect on cell size in non-calcifying phytoplankton. We discuss the implications of the temperature-related size trends in a global-warming context, based on known functional traits associated with phytoplankton size. These are a higher affinity for nutrients of smaller cells, highest maximal growth rates of moderately small phytoplankton (ca. 102 µm3), size-related sensitivities for different types of grazers, and impacts on sinking rates. For a phytoplankton community increasingly dominated by smaller algae we predict that: (i) a higher proportion of primary production will be respired within the microbial food web; (ii) a smaller share of primary production will be channeled to the classic phytoplankton – crustacean zooplankton – fish food chain, thus leading to decreased ecological efficiency from a fish-production point of view; (iii) a smaller share of primary production will be exported through sedimentation, thus leading to decreased efficiency of the biological carbon pump.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: Decreasing biodiversity is projected as one of the most consistent effects of warming on marine microbial communities. It is predicted that low biodiversity will consequently influence the community sensitivity to additional environmental alterations. Mesocosms were used to study the response of natural Mediterranean phytoplankton communities (control and heat shock + 6 °C) to salinity variations (− 5psu, control, + 5psu). We examined the effect on species composition, species richness as well as phytoplankton biomass and resource use efficiency. Heat shock was coupled with decreased species richness (30 species in control community while 26 in heat shock) and slightly reduced phytoplankton biomass. Changes in salinity altered the phytoplankton species composition (dinoflagellates were absent in decreased salinity treatments) and significantly reduced the phytoplankton species richness. The phytoplankton biomass and the resource use efficiency also decreased with exception of the increased salinity treatment in the non-heated community. In general, decreased salinity had stronger negative effects compared to increased salinity as displayed by the lowest species richness and lowest phytoplankton biomass in those treatments. Most notably, we identified a synergistic negative effect of heat shock with increased/decreased salinity which can be attributed to the lower species richness and, thus, decreased stability in the heated community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...