ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2020-08-12
    Description: In Colombia, industrialization and a shift towards intensified agriculture have led to increased emissions of air pollutants. However, the baseline state of air quality in Colombia is relatively unknown. In this study we aim to assess the baseline state of air quality in Colombia with a focus on the spatial and temporal variability in emissions and atmospheric burden of nitrogen oxides (NOx = NO + NO2) and evaluate surface NOx, ozone (O3) and carbon monoxide (CO) mixing ratios. We quantify the magnitude and spatial distribution of the four major NOx sources (lightning, anthropogenic activities, soil biogenic emissions and biomass burning) by integrating global NOx emission inventories into the mesoscale meteorology and atmospheric chemistry model, namely Weather Research and Forecasting (WRF) coupled with Chemistry (collectively WRF-Chem), at a similar resolution (∼25 km) to the Emission Database for Global Atmospheric Research (EDGAR) anthropogenic emission inventory and the Ozone Monitoring Instrument (OMI) remote sensing observations. The model indicates the largest contribution by lightning emissions (1258 Gg N yr−1), even after already significantly reducing the emissions, followed by anthropogenic (933 Gg N yr−1), soil biogenic (187 Gg N yr−1) and biomass burning emissions (104 Gg N yr−1). The comparison with OMI remote sensing observations indicated a mean bias of tropospheric NO2 columns over the whole domain (WRF-Chem minus OMI) of 0.02 (90 % CI: [−0.43, 0.70]) ×1015 molecules cm−2, which is
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-18
    Print ISSN: 0140-7791
    Electronic ISSN: 1365-3040
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-24
    Description: Ozone (O3) is a secondary air pollutant that negatively affects human and ecosystem health. Ozone simulations with regional air quality models suffer from unexplained biases over Europe, and uncertainties in the emissions of ozone precursor group nitrogen oxides (NOx=NO+NO2) contribute to these biases. The goal of this study is to use NO2 column observations from the Ozone Monitoring Instrument (OMI) satellite sensor to infer top-down NOx emissions in the regional Weather Research and Forecasting model with coupled chemistry (WRF-Chem) and to evaluate the impact on simulated surface O3 with in situ observations. We first perform a simulation for July 2015 over Europe and evaluate its performance against in situ observations from the AirBase network. The spatial distribution of mean ozone concentrations is reproduced satisfactorily. However, the simulated maximum daily 8 h ozone concentration (MDA8 O3) is underestimated (mean bias error of −14.2 µg m−3), and its spread is too low. We subsequently derive satellite-constrained surface NOx emissions using a mass balance approach based on the relative difference between OMI and WRF-Chem NO2 columns. The method accounts for feedbacks through OH, NO2's dominant daytime oxidant. Our optimized European NOx emissions amount to 0.50 Tg N (for July 2015), which is 0.18 Tg N higher than the bottom-up emissions (which lacked agricultural soil NOx emissions). Much of the increases occur across Europe, in regions where agricultural soil NOx emissions dominate. Our best estimate of soil NOx emissions in July 2015 is 0.1 Tg N, much higher than the bottom-up 0.02 Tg N natural soil NOx emissions from the Model of Emissions of Gases and Aerosols from Nature (MEGAN). A simulation with satellite-updated NOx emissions reduces the systematic bias between WRF-Chem and OMI NO2 (slope =0.98, r2=0.84) and reduces the low bias against independent surface NO2 measurements by 1.1 µg m−3 (−56 %). Following these NOx emission changes, daytime ozone is strongly affected, since NOx emission changes particularly affect daytime ozone formation. Monthly averaged simulated daytime ozone increases by 6.0 µg m−3, and increases of 〉10 µg m−3 are seen in regions with large emission increases. With respect to the initial simulation, MDA8 O3 has an improved spatial distribution, expressed by an increase in r2 from 0.40 to 0.53, and a decrease of the mean bias by 7.4 µg m−3 (48 %). Overall, our results highlight the dependence of surface ozone on its precursor NOx and demonstrate that simulations of surface ozone benefit from constraining surface NOx emissions by satellite NO2 column observations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-04-29
    Description: Ozone (O3) is a secondary air pollutant that negatively affects human and ecosystem health. Ozone simulations with regional air quality models suffer from unexplained biases over Europe, and uncertainties in the emissions of ozone precursor group nitrogen oxides (NOx = NO + NO2) contribute to these biases. The goal of this study is to use NO2 column observations from the OMI satellite sensor to infer top-down NOx emissions in the regional meteorology-chemistry model WRF-Chem, and to evaluate the impact on simulated surface O3 with in situ observations. We first perform a simulation for July 2015 over Europe and evaluate its performance against in situ observations from the AirBase network. The spatial distribution of mean ozone concentrations is reproduced satisfactorily. However, the simulated maximum daily 8-hour ozone concentration (MDA8 O3) is underestimated (mean bias error (MBE) = −14.2 μg m−3), and its spread is too low. We subsequently derive satellite-constrained surface NOx emissions using a mass balance approach based on the relative difference between OMI and WRF-Chem NO2 columns. The method accounts for feedbacks through OH, NO2's dominant daytime oxidant. Our optimized European NOx emissions amount to 0.50 Tg N (for July 2015), 0.18 Tg N higher than the bottom-up emissions (which lacked agricultural soil NOx emissions). Much of the increases occur across Europe, in regions where agricultural soil NOx emissions dominate. Our best estimate of soil NOx emissions in July 2015 is 0.1 Tg N, much higher than the bottom-up 0.02 Tg N natural soil NOx emissions from the MEGAN model. A simulation with satellite-updated NOx emissions reduces the systematic bias between WRF-Chem and OMI NO2 (slope = 0.98, r2 = 0.84), and reduces the low bias against independent surface NO2 measurements by 1.1 μg m−3 (−56 %). Following these NOx emission changes, daytime ozone is strongly affected, since NOx emission changes particularly affect daytime ozone formation. Monthly averaged simulated daytime ozone increases by 6.0 μg m−3, and increases of 〉10 μg m−3 are seen in regions with large emission increases. With respect to the initial simulation, MDA8 O3 has an improved spatial distribution, expressed by an increase in r2 from 0.40 to 0.53, and a reduced mean bias (−7.4 μg m−3, −48 %). Overall, our results highlight the dependence of surface ozone on its precursor NOx and demonstrate that simulations of surface ozone benefit from constraining surface NOx emissions by satellite NO2 column observations.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-04-12
    Description: Dry deposition to the surface is one of the main removal pathways of tropospheric ozone (O₃). We quantified for the first time the impact of O₃ deposition to the Arctic sea ice on the planetary boundary layer (PBL) O₃ concentration and budget using year-round flux and concentration observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) campaign and simulations with a single-column atmospheric chemistry and meteorological model (SCM). Based on eddy-covariance O₃ surface flux observations, we find a median surface resistance on the order of 20,000 s m¯¹, resulting in a dry deposition velocity of approximately 0.005 cm s¯¹. This surface resistance is up to an order of magnitude larger than traditionally used values in many atmospheric chemistry and transport models. The SCM is able to accurately represent the yearly cycle, with maxima above 40 ppb in the winter and minima around 15 ppb at the end of summer. However, the observed springtime ozone depletion events are not captured by the SCM. In winter, the modelled PBL O₃ budget is governed by dry deposition at the surface mostly compensated by downward turbulent transport of O₃ towards the surface. Advection, which is accounted for implicitly by nudging to reanalysis data, poses a substantial, mostly negative, contribution to the simulated PBL O₃ budget in summer. During episodes with low wind speed (〈5 m s¯¹) and shallow PBL (〈50 m), the 7-day mean dry deposition removal rate can reach up to 1.0 ppb h¯¹. Our study highlights the importance of an accurate description of dry deposition to Arctic sea ice in models to quantify the current and future O₃ sink in the Arctic, impacting the tropospheric O₃ budget, which has been modified in the last century largely due to anthropogenic activities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...