ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract This experimental study examines the effects of variable concentrations of dissolved H2O on the compositions of silicate melts and their coexisting mineral assemblage of olivine + orthopyroxene ± clinopyroxene ± spinel ± garnet. Experiments were performed at pressures of 1.2 to 2.0 GPa and temperatures of 1100 to 1345 °C, with up to ∼12 wt% H2O dissolved in the liquid. The effects of increasing the concentration of dissolved H2O on the major element compositions of melts in equilibrium with a spinel lherzolite mineral assemblage are to decrease the concentrations of SiO2, FeO, MgO, and CaO. The concentration of Al2O3 is unaffected. The lower SiO2 contents of the hydrous melts result from an increase in the activity coefficient for SiO2 with increasing dissolved H2O. The lower concentrations of FeO and MgO result from the lower temperatures at which H2O-bearing melts coexist with mantle minerals as compared to anhydrous melts. These compositional changes produce an elevated SiO2/(MgO + FeO) ratio in hydrous peridotite partial melts, making them relatively SiO2 rich when compared to anhydrous melts on a volatile-free basis. Hydrous peridotite melting reactions are affected primarily by the lowered mantle solidus. Temperature-induced compositional variations in coexisting pyroxenes lower the proportion of clinopyroxene entering the melt relative to orthopyroxene. Isobaric batch melting calculations indicate that fluid-undersaturated peridotite melting is characterized by significantly lower melt productivity than anhydrous peridotite melting, and that the peridotite melting process in subduction zones is strongly influenced by the composition of the H2O-rich component introduced into the mantle wedge from the subducted slab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 365 (1993), S. 332-334 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Compositional variations observed in spatially and temporally associated volcanic rocks have traditionally been interpreted as a record of the conditions in which the parent magma crystallized. Similarly, the mineral associations and the compositional variations in the accumulated crystals preserve ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-22
    Description: The solubility of H2O in silicate melt drops substantially with decreasing pressure, so that a magma initially containing several weight percent H2O in a crustal magma reservoir is left with only a few thousand parts per million following ascent and eruption at the Earth’s surface. This rapid release of volatiles makes determining the pre-eruptive H2O contents of magmas very difficult. Olivine-hosted melt inclusions are thought to retain their H2O because they are protected from decompression by the strength of the host crystal, and pre-eruptive concentrations obtained from melt inclusions have been used to both estimate the amount of H2O in the upper mantle and investigate its role in the melt generation process. The greatest uncertainty involved in constraining upper mantle conditions from melt inclusions is the potential for rapid diffusive loss or gain of H+ (protons) through the host olivine. Here we present results from hydration and dehydration experiments that demonstrate that, contrary to the widely held view, H2O loss or gain in melt inclusions is not limited by redox reactions and significant fluxes of H+ through the host olivine are possible on very short time scales. We also show that the Fe3+/ΣFe of an olivine-hosted melt inclusion maintains equilibrium with the external environment via diffusion of point defects through the host olivine. Our results demonstrate that, while pre-eruptive H2O and Fe3+/ΣFe can be reliably estimated, olivine-hosted melt inclusions do not necessarily retain a record of the H2O and O2 fugacity conditions at which they formed. High-H2O melt inclusions are particularly susceptible to diffusive dehydration, and therefore are not reliable proxies for the state of the upper mantle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-04
    Description: Author Posting. © Springer, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 152 (2006): 295-308, doi:10.1007/s00410-006-0108-1.
    Description: There is growing evidence that the budget of Pb in mantle peridotites is largely contained in sulfide, and that Pb partitions strongly into sulfide relative to silicate melt. In addition, there is evidence to suggest that diffusion rates of Pb in sulfide (solid or melt) are very fast. Given the possibility that sulfide melt ‘wets’ sub-solidus mantle silicates, and has very low viscosity, the implications for Pb behavior during mantle melting are profound. There is only sparse experimental data relating to Pb partitioning between sulfide and silicate, and no data on Pb diffusion rates in sulfides. A full understanding of Pb behavior in sulfide may hold the key to several long-standing and important Pb paradoxes and enigmas. The classical Pb isotope paradox arises from the fact that all known mantle reservoirs lie to the right of the Geochron, with no consensus as to the identity of the “balancing” reservoir. We propose that long-term segregation of sulfide (containing Pb) to the core may resolve this paradox. Another Pb paradox arises from the fact that the Ce/Pb ratio of both OIB and MORB is greater than bulk earth, and constant at a value of 25. The constancy of this “canonical ratio” implies similar partition coefficients for Ce and Pb during magmatic processes (Hofmann et al. 1986), whereas most experimental studies show that Pb is more incompatible in silicates than Ce. Retention of Pb in residual mantle sulfide during melting has the potential to bring the bulk partitioning of Ce into equality with Pb if the sulfide melt/silicate melt partition coefficient for Pb has a value of ~ 14. Modeling shows that the Ce/Pb (or Nd/Pb) of such melts will still accurately reflect that of the source, thus enforcing the paradox that OIB and MORB mantles have markedly higher Ce/Pb (and Nd/Pb) than the bulk silicate earth. This implies large deficiencies of Pb in the mantle sources for these basalts. Sulfide may play other important roles during magmagenesis: 1). advective/diffusive sulfide networks may form potent metasomatic agents (in both introducing and obliterating Pb isotopic heterogeneities in the mantle); 2). silicate melt networks may easily exchange Pb with ambient mantle sulfides (by diffusion or assimilation), thus ‘sampling’ Pb in isotopically heterogeneous mantle domains differently from the silicate-controlled isotope tracer systems (Sr, Nd, Hf), with an apparent ‘de-coupling’ of these systems.
    Description: Our intemperance should not be blamed on the support we gratefully acknowledge from NSF: EAR- 0125917 to SRH and OCE-0118198 to GAG.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 2032245 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-04
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 19 (2009): Q07005, doi:10.1029/2009GC002411.
    Description: We reared primary polyps (new recruits) of the common Atlantic golf ball coral Favia fragum for 8 days at 25°C in seawater with aragonite saturation states ranging from ambient (Ω = 3.71) to strongly undersaturated (Ω = 0.22). Aragonite was accreted by all corals, even those reared in strongly undersaturated seawater. However, significant delays, in both the initiation of calcification and subsequent growth of the primary corallite, occurred in corals reared in treatment tanks relative to those grown at ambient conditions. In addition, we observed progressive changes in the size, shape, orientation, and composition of the aragonite crystals used to build the skeleton. With increasing acidification, densely packed bundles of fine aragonite needles gave way to a disordered aggregate of highly faceted rhombs. The Sr/Ca ratios of the crystals, measured by SIMS ion microprobe, increased by 13%, and Mg/Ca ratios decreased by 45%. By comparing these variations in elemental ratios with results from Rayleigh fractionation calculations, we show that the observed changes in crystal morphology and composition are consistent with a 〉80% decrease in the amount of aragonite precipitated by the corals from each “batch” of calcifying fluid. This suggests that the saturation state of fluid within the isolated calcifying compartment, while maintained by the coral at levels well above that of the external seawater, decreased systematically and significantly as the saturation state of the external seawater decreased. The inability of the corals in acidified treatments to achieve the levels of calcifying fluid supersaturation that drive rapid crystal growth could reflect a limit in the amount of energy available for the proton pumping required for calcification. If so, then the future impact of ocean acidification on tropical coral ecosystems may depend on the ability of individuals or species to overcome this limitation and achieve the levels of calcifying fluid supersaturation required to ensure rapid growth.
    Description: This study was supported by NSF OCE-0648157 and NSF OCE-0823527 and the Bermuda Institute for Ocean Sciences.
    Keywords: Ocean acidification ; Coral ; Sr/Ca ; Calcification ; Mg/Ca ; Biomineralization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-08-16
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 32 (2017): 146–160, doi:10.1002/2016PA002976.
    Description: Coral skeletons are valuable archives of past ocean conditions. However, interpretation of coral paleotemperature records is confounded by uncertainties associated with single-element ratio thermometers, including Sr/Ca. A new approach, Sr-U, uses U/Ca to constrain the influence of Rayleigh fractionation on Sr/Ca. Here we build on the initial Pacific Porites Sr-U calibration to include multiple Atlantic and Pacific coral genera from multiple coral reef locations spanning a temperature range of 23.15–30.12°C. Accounting for the wintertime growth cessation of one Bermuda coral, we show that Sr-U is strongly correlated with the average water temperature at each location (r2 = 0.91, P 〈 0.001, n = 19). We applied the multispecies spatial calibration between Sr-U and temperature to reconstruct a 96 year long temperature record at Mona Island, Puerto Rico, using a coral not included in the calibration. Average Sr-U derived temperature for the period 1900–1996 is within 0.12°C of the average instrumental temperature at this site and captures the twentieth century warming trend of 0.06°C per decade. Sr-U also captures the timing of multiyear variability but with higher amplitude than implied by the instrumental data. Mean Sr-U temperatures and patterns of multiyear variability were replicated in a second coral in the same grid box. Conversely, Sr/Ca records from the same two corals were inconsistent with each other and failed to capture absolute sea temperatures, timing of multiyear variability, or the twentieth century warming trend. Our results suggest that coral Sr-U paleothermometry is a promising new tool for reconstruction of past ocean temperatures.
    Description: NSF Graduate Research Fellowships Grant Numbers: NSF-OCE-1338320, NSF-OCE-1031971, NSF-OCE-0926986; WHOI Access to the Sea Grant Numbers: 27500056, 0734826; NSF HRD; UPR Central Administration to EAHD through the Center for Applied Tropical Ecology and Conservation of UPR
    Description: 2017-08-16
    Keywords: Coral ; Temperature ; Paleoceangraphy ; Paleothermometry ; Global warming ; Biomineralization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-01-04
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q03001, doi:10.1029/2010GC003322.
    Description: In situ secondary ion mass spectrometry (SIMS) analyses of δ7Li, Li/Ca, and Mg/Ca were performed on five synthetic aragonite samples precipitated from seawater at 25°C at different rates. The compositions of δ7Li in bulk aragonites and experimental fluids were measured by multicollector inductively coupled plasma–mass spectrometry (MC-ICP-MS). Both techniques yielded similar δ7Li in aragonite when SIMS analyses were corrected to calcium carbonate reference materials. Fractionation factors α7Li/6Li range from 0.9895 to 0.9923, which translates to a fractionation between aragonite and fluid from −10.5‰ to −7.7‰. The within-sample δ7Li range determined by SIMS is up to 27‰, exceeding the difference between bulk δ7Li analyses of different aragonite precipitates. Moreover, the centers of aragonite hemispherical bundles (spherulites) are enriched in Li/Ca and Mg/Ca relative to spherulite fibers by up to factors of 2 and 8, respectively. The Li/Ca and Mg/Ca ratios of spherulite fibers increase with aragonite precipitation rate. These results suggest that precipitation rate is a potentially important consideration when using Li isotopes and elemental ratios in natural carbonates as a proxy for seawater composition and temperature.
    Description: SIMS analyses were supported by U.S. NSF, EAR, Instrumentation and Facilities Program. The development of the method for bulk d7Li analysis and the MC‐ICP‐MS measurements were covered by NSF grant EAR/IF‐0318137. Precipitation experiments were supported by NSF through grants OCE‐0402728, OCE‐0527350, and OCE‐0823527 to Glenn Gaetani and Anne Cohen and through grant EAR‐0337481 to Bruce Watson.
    Keywords: Isotope ; Aragonite ; Rate ; SIMS ; Magnesium ; Lithium
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-06-02
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 121 (2016): 5776–5793, doi:10.1002/2016JB013122.
    Description: Observations of dunite channels in ophiolites and uranium series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. We present experimental evidence that spatial variations in mineralogy can also focus melt on the grain scale. This lithologic melt partitioning, which results from differences in the interfacial energies associated with olivine-melt and orthopyroxene-melt boundaries, may complement other melt focusing mechanisms in the upper mantle such as mechanical shear and pyroxene dissolution. We document here lithologic melt partitioning in olivine-/orthopyroxene-basaltic melt samples containing nominal olivine to orthopyroxene ratio of 3 to 2 and melt fractions of 0.02 to 0.20. Experimental samples were imaged using synchrotron-based X-ray microcomputed tomography at a resolution of 700 nm per voxel. By analyzing the local melt fraction distributions associated with olivine and orthopyroxene grains in each sample, we found that the melt partitioning coefficient, i.e., the ratio of melt fraction around olivine to that around orthopyroxene grains, varies between 1.1 and 1.6. The permeability and electrical conductivity of our digital samples were estimated using numerical models and compared to those of samples containing only olivine and basaltic melt. Our results suggest that lithologic melt partitioning and preferential localization of melt around olivine grains might play a role in melt focusing, potentially enhancing average melt ascent velocities.
    Description: National Science Foundation Grant Numbers: 1250338, 1551300; Basic Energy Sciences Grant Number: DEFG0207ER15916; Advanced Photon Source Grant Number: DE-AC02-06CH11357
    Description: 2017-02-28
    Keywords: Melt transport ; Rock physics ; Fluid-rock interaction ; Mid-ocean ridge ; Digital rock physics ; Partial melt
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-01-04
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q12004, doi:10.1029/2006GC001354.
    Description: We analyzed Sr/Ca and Mg/Ca ratios in the thecal wall of Lophelia pertusa, a cold-water coral, using SIMS ion microprobe techniques. The wall grows by simultaneous upward extension and outward thickening. Compositional variability displays similar trends along the upward and outward growth axes. Sr/Ca and Mg/Ca ratios oscillate systematically and inversely. The sensitivity of Lophelia Sr/Ca ratios to the annual temperature cycle (−0.18 mmol · mol−1/°C) is twice as strong as that exhibited by tropical reef corals, and four times as strong as the temperature dependence of Sr/Ca ratios of abiogenic aragonites precipitated experimentally from seawater. A comparison of the skeletal composition of Lophelia with results from precipitation calculations carried out using experimentally determined partition coefficients suggests that both temperature-dependent element partitioning and seasonal changes in the mass fraction of aragonite precipitated from the calcifying fluid influence the composition of Lophelia skeleton. Results from calculations that combine these effects reproduce both the exaggerated amplitude of the Sr/Ca and Mg/Ca oscillations and the inverse relationship between Sr/Ca and Mg/Ca ratios.
    Description: This study was supported in part by a WHOI Ocean Life Institute fellowship to ALC, by NSF grant OCE-0527350 to G.A.G. and A.L.C., and by the EU 6FP project HERMES, EC contract GOCE-CT-2005-511234 to T.L.
    Keywords: Coral ; Aragonite ; Vital effects ; Sr/Ca ; Mg/Ca ; Deep-sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 376180 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-05-26
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 1115–1132, doi:10.1002/2014GC005709.
    Description: The NoMelt experiment imaged the mantle beneath 70 Ma Pacific seafloor with the aim of understanding the transition from the lithosphere to the underlying convecting asthenosphere. Seafloor magnetotelluric data from four stations were analyzed using 2-D regularized inverse modeling. The preferred electrical model for the region contains an 80 km thick resistive (〉103 Ωm) lithosphere with a less resistive (∼50 Ωm) underlying asthenosphere. The preferred model is isotropic and lacks a highly conductive (≤10 Ωm) layer under the resistive lithosphere that would be indicative of partial melt. We first examine temperature profiles that are consistent with the observed conductivity profile. Our profile is consistent with a mantle adiabat ranging from 0.3 to 0.5°C/km. A choice of the higher adiabatic gradient means that the observed conductivity can be explained solely by temperature. In contrast, a 0.3°C/km adiabat requires an additional mechanism to explain the observed conductivity profile. Of the plausible mechanisms, H2O, in the form of hydrogen dissolved in olivine, is the most likely explanation for this additional conductivity. Our profile is consistent with a mostly dry lithosphere to 80 km depth, with bulk H2O contents increasing to between 25 and 400 ppm by weight in the asthenosphere with specific values dependent on the choice of laboratory data set of hydrous olivine conductivity and the value of mantle oxygen fugacity. The estimated H2O contents support the theory that the rheological lithosphere is a result of dehydration during melting at a mid-ocean ridge with the asthenosphere remaining partially hydrated and weakened as a result.
    Description: Funding for the NoMELT experiment was provided by the National Science Foundation through the following grant numbers: OCE-0927172, OCE-0928270, OCE-1459649, and OCE-0928663.
    Description: 2015-10-18
    Keywords: Water ; Lithosphere-asthenosphere boundary ; Olivine ; Magnetotellurics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...