ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-09-01
    Print ISSN: 1352-2310
    Electronic ISSN: 1873-2844
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-28
    Description: This study quantifies future changes in tropospheric ozone (O3) using a simple parameterisation of source–receptor relationships based on simulations from a range of models participating in the Task Force on Hemispheric Transport of Air Pollutants (TF-HTAP) experiments. Surface and tropospheric O3 changes are calculated globally and across 16 regions from perturbations in precursor emissions (NOx, CO, volatile organic compounds – VOCs) and methane (CH4) abundance only, neglecting any impact from climate change. A source attribution is provided for each source region along with an estimate of uncertainty based on the spread of the results from the models. Tests against model simulations using the Hadley Centre Global Environment Model version 2 – Earth system configuration (HadGEM2-ES) confirm that the approaches used within the parameterisation perform well for most regions. The O3 response to changes in CH4 abundance is slightly larger in the TF-HTAP Phase 2 than in the TF-HTAP Phase 1 assessment (2010) and provides further evidence that controlling CH4 is important for limiting future O3 concentrations. Different treatments of chemistry and meteorology in models remain one of the largest uncertainties in calculating the O3 response to perturbations in CH4 abundance and precursor emissions, particularly over the Middle East and south Asia regions. Emission changes for the future Evaluating the CLimate and Air Quality ImPacts of Short-livEd Pollutants (ECLIPSE) scenarios and a subset of preliminary Shared Socioeconomic Pathways (SSPs) indicate that surface O3 concentrations will increase regionally by 1 to 8 ppbv in 2050. Source attribution analysis highlights the growing importance of CH4 in the future under current legislation. A change in the global tropospheric O3 radiative forcing of +0.07 W m−2 from 2010 to 2050 is predicted using the ECLIPSE scenarios and SSPs, based solely on changes in CH4 abundance and tropospheric O3 precursor emissions and neglecting any influence of climate change. Current legislation is shown to be inadequate in limiting the future degradation of surface ozone air quality and enhancement of near-term climate warming. More stringent future emission controls provide a large reduction in both surface O3 concentrations and O3 radiative forcing. The parameterisation provides a simple tool to highlight the different impacts and associated uncertainties of local and hemispheric emission control strategies on both surface air quality and the near-term climate forcing by tropospheric O3.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-23
    Description: Ambient air pollution from ozone and fine particulate matter is associated with premature mortality. As emissions from one continent influence air quality over others, changes in emissions can also influence human health on other continents. We estimate global air-pollution-related premature mortality from exposure to PM2.5 and ozone and the avoided deaths due to 20 % anthropogenic emission reductions from six source regions, North America (NAM), Europe (EUR), South Asia (SAS), East Asia (EAS), Russia–Belarus–Ukraine (RBU), and the Middle East (MDE), three global emission sectors, power and industry (PIN), ground transportation (TRN), and residential (RES), and one global domain (GLO), using an ensemble of global chemical transport model simulations coordinated by the second phase of the Task Force on Hemispheric Transport of Air Pollutants (TF HTAP2), and epidemiologically derived concentration response functions. We build on results from previous studies of TF HTAP by using improved atmospheric models driven by new estimates of 2010 anthropogenic emissions (excluding methane), with more source and receptor regions, new consideration of source sector impacts, and new epidemiological mortality functions. We estimate 290 000 (95 % confidence interval (CI): 30 000, 600 000) premature O3-related deaths and 2.8 million (0.5 million, 4.6 million) PM2.5-related premature deaths globally for the baseline year 2010. While 20 % emission reductions from one region generally lead to more avoided deaths within the source region than outside, reducing emissions from MDE and RBU can avoid more O3-related deaths outside of these regions than within, and reducing MDE emissions also avoids more PM2.5-related deaths outside of MDE than within. Our findings that most avoided O3-related deaths from emission reductions in NAM and EUR occur outside of those regions contrast with those of previous studies, while estimates of PM2.5-related deaths from NAM, EUR, SAS, and EAS emission reductions agree well. In addition, EUR, MDE, and RBU have more avoided O3-related deaths from reducing foreign emissions than from domestic reductions. For six regional emission reductions, the total avoided extra-regional mortality is estimated as 6000 (−3400, 15 500) deaths per year and 25 100 (8200, 35 800) deaths per year through changes in O3 and PM2.5, respectively. Interregional transport of air pollutants leads to more deaths through changes in PM2.5 than in O3, even though O3 is transported more on interregional scales, since PM2.5 has a stronger influence on mortality. For NAM and EUR, our estimates of avoided mortality from regional and extra-regional emission reductions are comparable to those estimated by regional models for these same experiments. In sectoral emission reductions, TRN emissions account for the greatest fraction (26–53 % of global emission reduction) of O3-related premature deaths in most regions, in agreement with previous studies, except for EAS (58 %) and RBU (38 %) where PIN emissions dominate. In contrast, PIN emission reductions have the greatest fraction (38–78 % of global emission reduction) of PM2.5-related deaths in most regions, except for SAS (45 %) where RES emission dominates, which differs with previous studies in which RES emissions dominate global health impacts. The spread of air pollutant concentration changes across models contributes most to the overall uncertainty in estimated avoided deaths, highlighting the uncertainty in results based on a single model. Despite uncertainties, the health benefits of reduced intercontinental air pollution transport suggest that international cooperation may be desirable to mitigate pollution transported over long distances.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-31
    Description: Diffuse light conditions can increase the efficiency of photosynthesis and carbon uptake by vegetation canopies. The diffuse fraction of photosynthetically active radiation (PAR) can be affected by either a change in the atmospheric aerosol burden and/or a change in cloudiness. During the dry season, a hotspot of biomass burning on the edges of the Amazon rainforest emits a complex mixture of aerosols and their precursors and climate-active trace gases (e.g. CO2, CH4, NOx). This creates potential for significant interactions between chemistry, aerosol, cloud, radiation and the biosphere across the Amazon region. The combined effects of biomass burning on the terrestrial carbon cycle for the present day are potentially large, yet poorly quantified. Here, we quantify such effects using the Met Office Hadley Centre Earth system model HadGEM2-ES, which provides a fully coupled framework with interactive aerosol, radiative transfer, dynamic vegetation, atmospheric chemistry and biogenic volatile organic compound emission components. Results show that for present day, defined as year 2000 climate, the overall net impact of biomass burning aerosols is to increase net primary productivity (NPP) by +80 to +105 TgC yr−1, or 1.9 % to 2.7 %, over the central Amazon Basin on annual mean. For the first time we show that this enhancement is the net result of multiple competing effects: an increase in diffuse light which stimulates photosynthetic activity in the shaded part of the canopy (+65 to +110 TgC yr−1), a reduction in the total amount of radiation (−52 to −105 TgC yr−1) which reduces photosynthesis and feedback from climate adjustments in response to the aerosol forcing which increases the efficiency of biochemical processes (+67 to +100 TgC yr−1). These results illustrate that despite a modest direct aerosol effect (the sum of the first two counteracting mechanisms), the overall net impact of biomass burning aerosols on vegetation is sizeable when indirect climate feedbacks are considered. We demonstrate that capturing the net impact of aerosols on vegetation should be assessed considering the system-wide behaviour.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-05-16
    Description: Here we present results from an evaluation of model simulations from the International Hemispheric Transport of Air Pollution Phase II (HTAPII) and Chemistry Climate Model Initiative (CCMI) model inter-comparison projects against a comprehensive series of ground-based, aircraft and satellite observations of ozone mixing ratios made at various locations across India. The study focuses on the recent past (observations from 2008 to 2013, models from 2009–2010) as this is most pertinent to understanding the health impacts of ozone. To our understanding this is the most comprehensive evaluation of these models' simulations of ozone across the Indian subcontinent to date. This study highlights some significant successes and challenges that the models face in representing the oxidative chemistry of the region. The multi-model range in area-weighted surface ozone over the Indian subcontinent is 37.26–56.11 ppb, whilst the population-weighted range is 41.38–57.5 ppb. When compared against surface observations from the Modelling Atmospheric Pollution and Networking (MAPAN) network of eight semi-urban monitoring sites spread across India, we find that the models tend to simulate higher ozone than that which is observed. However, observations of NOx and CO tend to be much higher than modelled mixing ratios, suggesting that the underlying emissions used in the models do not characterise these regions accurately and/or that the resolution of the models is not adequate to simulate the photo-chemical environment of these surface observations. Empirical orthogonal function (EOF) analysis is used in order to identify the extent to which the models agree with regards to the spatio-temporal distribution of the tropospheric ozone column, derived using OMI-MLS observations. We show that whilst the models agree with the spatial pattern of the first EOF of observed tropospheric ozone column, most of the models simulate a peak in the first EOF seasonal cycle represented by principle component 1, which is later than the observed peak. This suggests a widespread systematic bias in the timing of emissions or some other unknown seasonal process. In addition to evaluating modelled ozone mixing ratios, we explore modelled emissions of NOx, CO, volatile organic compounds (VOCs) and the ozone response to the emissions. We find a high degree of variation in emissions from non-anthropogenic sources (e.g. lightning NOx and biomass burning CO) between models. Total emissions of NOx and CO over India vary more between different models in the same model intercomparison project (MIP) than the same model used in different MIPs, making it impossible to diagnose whether differences in modelled ozone are due to emissions or model processes. We therefore recommend targeted experiments to pinpoint the exact causes of discrepancies between modelled and observed ozone and ozone precursors for this region. To this end, a higher density of long-term monitoring sites measuring not only ozone but also ozone precursors including speciated VOCs, located in more rural regions of the Indian subcontinent, would enable improvements in assessing the biases in models run at the resolution found in HTAPII and CCMI.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-11
    Description: The capacity of the terrestrial biosphere to sequester carbon and mitigate climate change is governed by the ability of vegetation to remove emissions of CO2 through photosynthesis. Tropospheric O3, a globally abundant and potent greenhouse gas, is, however, known to damage plants, causing reductions in primary productivity, yet the impact of this gas on European vegetation and the land carbon sink is largely unknown. Despite emission control policies across Europe, background concentrations of tropospheric O3 have risen significantly over the last decades due to hemispheric-scale increases in O3 and its precursors. Therefore, plants are exposed to increasing background concentrations, at levels currently causing chronic damage. We use the JULES land-surface model recalibrated for O3 impacts on European vegetation, with an improved stomatal conductance parameterization, to quantify the impact of tropospheric O3, and its interaction with CO2, on gross primary productivity (GPP) and land carbon storage across Europe. A factorial set of model experiments showed that tropospheric O3 can significantly suppress terrestrial carbon uptake across Europe over the period 1901 to 2050. By 2050, simulated GPP was reduced by 4 to 9 % due to plant ozone damage, however, the combined effects of elevated future CO2 (acting to reduce stomatal opening) and reductions in O3 concentrations resulted in reduced O3 damage in the future, contrary to predictions from earlier studies. Reduced land carbon storage resulted from diminished soil carbon stocks consistent with the reduction in GPP. Regional variations are identified with larger impacts shown for temperate Europe compared to boreal regions. These results highlight that the effects of O3 on plant physiology add to the uncertainty of future trends in the land carbon sink and, as such, this should be incorporated into carbon cycle assessments.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-11-01
    Description: There is a clear need for the development of modelling frameworks for both climate change and air quality to help inform policies for addressing these issues simultaneously. This paper presents an initial attempt to develop a single modelling framework, by introducing a greater degree of consistency in the meteorological modelling framework by using a two-step, one-way nested configuration of models, from a global composition-climate model (GCCM) (140 km resolution) to a regional composition-climate model covering Europe (RCCM) (50 km resolution) and finally to a high (12 km) resolution model over the UK (AQUM). The latter model is used to produce routine air quality forecasts for the UK. All three models are based on the Met Office's Unified Model (MetUM). In order to better understand the impact of resolution on the downscaling of projections of future climate and air quality, we have used this nest of models to simulate a 5-year period using present-day emissions and under present-day climate conditions. We also consider the impact of running the higher-resolution model with higher spatial resolution emissions, rather than simply regridding emissions from the RCCM. We present an evaluation of the models compared to in situ air quality observations over the UK, plus a comparison against an independent 1 km resolution gridded dataset, derived from a combination of modelling and observations, effectively producing an analysis of annual mean surface pollutant concentrations. We show that using a high-resolution model over the UK has some benefits in improving air quality modelling, but that the use of higher spatial resolution emissions is important to capture local variations in concentrations, particularly for primary pollutants such as nitrogen dioxide and sulfur dioxide. For secondary pollutants such as ozone and the secondary component of PM10, the benefits of a higher-resolution nested model are more limited and reasons for this are discussed. This study highlights the point that the resolution of models is not the only factor in determining model performance – consistency between nested models is also important.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-07-13
    Description: The capacity of the terrestrial biosphere to sequester carbon and mitigate climate change is governed by the ability of vegetation to remove emissions of CO2 through photosynthesis. Tropospheric O3, a globally abundant and potent greenhouse gas, is, however, known to damage plants, causing reductions in primary productivity. Despite emission control policies across Europe, background concentrations of tropospheric O3 have risen significantly over the last decades due to hemispheric-scale increases in O3 and its precursors. Therefore, plants are exposed to increasing background concentrations, at levels currently causing chronic damage. Studying the impact of O3 on European vegetation at the regional scale is important for gaining greater understanding of the impact of O3 on the land carbon sink at large spatial scales. In this work we take a regional approach and update the JULES land surface model using new measurements specifically for European vegetation. Given the importance of stomatal conductance in determining the flux of O3 into plants, we implement an alternative stomatal closure parameterisation and account for diurnal variations in O3 concentration in our simulations. We conduct our analysis specifically for the European region to quantify the impact of the interactive effects of tropospheric O3 and CO2 on gross primary productivity (GPP) and land carbon storage across Europe. A factorial set of model experiments showed that tropospheric O3 can suppress terrestrial carbon uptake across Europe over the period 1901 to 2050. By 2050, simulated GPP was reduced by 4 to 9 % due to plant O3 damage and land carbon storage was reduced by 3 to 7 %. The combined physiological effects of elevated future CO2 (acting to reduce stomatal opening) and reductions in O3 concentrations resulted in reduced O3 damage in the future. This alleviation of O3 damage by CO2-induced stomatal closure was around 1 to 2 % for both land carbon and GPP, depending on plant sensitivity to O3. Reduced land carbon storage resulted from diminished soil carbon stocks consistent with the reduction in GPP. Regional variations are identified with larger impacts shown for temperate Europe (GPP reduced by 10 to 20 %) compared to boreal regions (GPP reduced by 2 to 8 %). These results highlight that O3 damage needs to be considered when predicting GPP and land carbon, and that the effects of O3 on plant physiology need to be considered in regional land carbon cycle assessments.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2020-10-14
    Description: As one of the main drivers for climate change, it is important to understand changes in anthropogenic aerosol emissions and evaluate the climate impact. Anthropogenic aerosols have affected global climate while exerting a much larger influence on regional climate by their short lifetime and heterogeneous spatial distribution. In this study, the effective radiative forcing (ERF), which has been accepted as a useful index for quantifying the effect of climate forcing, was evaluated to understand the effects of aerosol on regional climate over a historical period (1850–2014). Eastern United States (EUS), Western European Union (WEU), and Eastern Central China (ECC), are regions that predominantly emit anthropogenic aerosols and were analyzed using Coupled Model Intercomparison Project 6 (CMIP6) simulations implemented within the framework of the Aerosol Chemistry Model Intercomparison Project (AerChemMIP) in the UK’s Earth System Model (UKESM1). In EUS and WEU, where industrialization occurred relatively earlier, the negative ERF seems to have been recovering in recent decades based on the decreasing trend of aerosol emissions. Conversely, the radiative cooling in ECC seems to be strengthened as aerosol emission continuously increases. These aerosol ERFs have been largely attributed to atmospheric rapid adjustments, driven mainly by aerosol-cloud interactions rather than direct effects of aerosol such as scattering and absorption.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...