ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 32 (1996), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : Snowmelt from deep mountainous snowpacks is seldom rapid enough to exceed infiltration rates; thus, the source of streamflow in many mountainous watersheds is snowmelt recharge through shallow ground water systems. The hydrologic response and interaction between surface and sub-surface flow processes in these watersheds, which is controlled by basin structure, the spatial distribution of snowmelt, and the hydrogeology of the subsurface, are not well understood. The purpose of this study was to test a three-dimensional ground water model using simulated snowmelt input to simulate ground water response to spatially distributed snowmelt on the Upper Sheep Creek Watershed located within the Reynolds Creek Experimental Watershed in Southwestern Idaho. The model was used to characterize the mountainous aquifer and to delineate the subsurface flow mechanisms. Difficulty in finding a reasonable combination of grid spacing and time stepping within the model was encountered due to convergence problems with the Picard solution to the non-linear variably saturated ground water flow equations. Simulation results indicated that flow may be either unconfined or confined depending on inflow rate and hydrogeologic conditions in the watershed. The flow mechanism had a much faster response time when confined flow occurred. Response to snowmelt from a snow drift approximately 90 m away took only a few hours when flow was confined. Simulated results showed good agreement with piezometer measurements both in magnitude and timing; however, convergence problems with the Picard solution limited applicability of the model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-01-01
    Print ISSN: 0013-936X
    Electronic ISSN: 1520-5851
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-02-22
    Description: In situ determination of soil freezing and thawing is difficult despite its importance for many environmental processes. A sensible heat balance (SHB) method using a sequence of heat pulse probes has been shown to accurately measure water evaporation in subsurface soil, and it has the potential to measure soil freezing and thawing. Determination of soil freezing and thawing may be more challenging than evaporation, however, because the latent heat of fusion is smaller than the latent heat of vaporization. Furthermore, convective heat flow associated with liquid water flow and occurrence of evaporation or condensation during freezing and thawing may cause inaccurate estimation of freezing and thawing with the SHB method. The objective of this study was to examine the applicability of the SHB concept to soil freezing and thawing. Soil freezing and thawing events were simulated with the simultaneous heat and water (SHAW) model. Ice contents were estimated by applying the SHB concept to numerical data produced by the SHAW model. Close agreement between the SHB-estimated and the SHAW-simulated ice contents were observed at depths below 24 mm. The main cause of inaccuracies with the SHB method was poor estimation of heat conduction at the 12-mm depth, possibly due to simplifications of temporal or vertical distributions of temperature and thermal conductivity. The effects of convective heat flow and concurrent evaporation or condensation and freezing or thawing on the SHB method were small. The results indicate that the SHB method is conceptually suitable for estimating soil freezing and thawing. Independent, accurate estimates of thermal properties must be available to effectively use the SHB method to determine in situ soil freezing and thawing.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-09-26
    Description: Soil ice content impacts winter vadose zone hydrology. It may be possible to estimate changes in soil ice content with a sensible heat balance (SHB) method, using measurements from heat pulse (HP) sensors. Feasibility of the SHB method is unknown because of difficulties in measuring soil thermal properties in partially frozen soils. The objectives of this study were (i) to examine the SHB method for determining in situ ice content, and (ii) to evaluate the required accuracy of HP sensors for use in the SHB method. Heat pulse sensors were installed in a bare field to measure soil temperatures and thermal properties during freezing and thawing events. In situ soil ice contents were determined at 60-min intervals with SHB theory. Sensitivity of the SHB method to temperature, heat capacity, thermal conductivity, and time step size was analyzed based on numerically produced soil freezing and thawing events. The in situ ice contents determined with the SHB method were sometimes unrealistically large or even negative. Thermal conductivity accuracy and time step size were the key factors contributing to SHB errors, while temperature and heat capacity accuracy had less influence. Ice content estimated with a 15-min SHB time step was more accurate than that estimated with a 60-min time step. Sensitivity analysis indicated that measurement errors in soil temperature and thermal conductivity should be less than ±0.05°C and ±20%, respectively, but the error in the soil heat capacity could vary by ±50%. Thus, improving the accuracy of thermal conductivity measurements and using short time steps are required to accurately estimate soil ice contents with the SHB method.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-24
    Description: Evapotranspiration (ET) was quantified for two rangeland vegetation types, aspen and sagebrush-grassland, over an 8-yr study period by comparing the following approaches for estimating ET: eddy covariance systems (EC, available for only 6 yr); soil water storage loss measured by time domain reflectometry (TDR) and neutron probe; and model simulation. The research site, the Upper Sheep Creek catchment in the Reynolds Creek Experimental Watershed, is part of a study on the effects of prescribed fire and vegetation removal. Estimates of seasonal ET for the aspen using EC with the turbulent fluxes adjusted to force energy balance closure, a 180-cm TDR soil profile, two 225-cm neutron access tubes, and the Simultaneous Heat and Water (SHAW) model agreed well with each other. If the two neutron probes were averaged, the RMSD of all approaches over the 6 yr was within 8% of the average. For the sagebrush-grassland, a 120-cm TDR profile underestimated seasonal ET for all years except the year immediately following the prescribed fire, when rooting depth likely had not recovered. A 195-cm neutron probe access tube located within 30 m of the stream underestimated ET for every year except when there was no streamflow, suggesting that lateral flow may have biased the results for this tube. A comparison of the other methods (EC flux adjusted to force energy balance closure, soil water loss measured from a 225-cm neutron access tube, and SHAW model simulation) agreed within 3% during the 6 yr with EC measurements at that site.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-05-17
    Description: Soil ice content is an important component for winter soil hydrology. The sensible heat balance (SHB) method using measurements from heat pulse probes (HPPs) is a possible way to determine transient soil ice content. In a previous study, in situ soil ice content estimates with the SHB method were inaccurate, due to thermal conductivity errors and the use of relatively long time steps for calculations. The objective of this study is to reexamine the SHB method for soil ice content determination. A soil freezing and thawing laboratory experiment was performed with soil columns and heat exchangers. Transient soil ice contents in the soil columns during soil freezing and thawing were determined with the SHB method. The SHB method was able to determine dynamic changes in soil ice contents during initial freezing and final thawing for soil temperatures between –5 and 0°C when latent heat values associated with ice formation or with thawing were relatively large. During an extended freezing period, when soil temperatures were below –5°C, the small associated latent heat fluxes were below the sensitivity of the SHB method, and the SHB method did not provide accurate estimates of ice contents with time. However, the soil ice contents during the extended freezing period could be estimated well from changes in volumetric heat capacity ( C ) determined with HPP. Thus, combining the SHB method for initial freezing and final thawing, with a change in C method for extended freezing periods, allowed determination of dynamic soil ice contents for the entire range of freezing and thawing soil temperatures investigated. HPPs were able to measure soil ice contents.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2010-02-01
    Description: The Decision Support System for Agrotechnology Transfer-Cropping System Model (DSSAT-CSM) is a widely used modeling package that often simulates wheat yield and biomass well. However, some previous studies reported that its simulation on soil moisture was not always satisfactory. On the other hand, the Simultaneous Heat and Water (SHAW) model, a more sophisticated, hourly time step soil microclimate model, needs inputs of plant canopy development over time, which are difficult to measure in the field especially for a long-term period (longer than a year). The SHAW model also needs information on surface residue, but treats them as constants. In reality, however, surface residue changes continuously under the effect of tillage, rotation and environment. We therefore proposed to use DSSAT-CSM to simulate dynamics of plant growth and soil surface residue for input into SHAW, so as to predict soil water dynamics. This approach was tested using three conventionally tilled wheat rotations (continuous wheat, wheat-fallow and wheat-wheat-fallow) of a long-term cropping systems study located on a Thin Black Chernozemic clay loam near Three Hills, Alberta, Canada. Results showed that DSSAT-CSM often overestimated the drying of the surface layers in wheat rotations, but consistently overestimated soil moisture in the deep soil. This is likely due to the underestimation of root water extraction despite model predictions that the root system reached 80 cm. Among the eight growth/residue parameters simulated by DSSAT-CSM, root depth, leaf area index and residue thickness are the most influential characteristics on the simulation of soil moisture by SHAW. The SHAW model using DSSAT-CSM-simulated information significantly improved prediction of soil moisture at different depths and total soil water at 0-120 cm in all rotations with different phases compared with that simulated by DSSAT-CSM. Key words: Soil moisture, modeling, Decision Support System for Agrotechnology Transfer-Cropping System Model, Simultaneous Heat and Water Model
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1994-10-01
    Print ISSN: 0262-6667
    Electronic ISSN: 2150-3435
    Topics: Geography
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1994-10-01
    Print ISSN: 0262-6667
    Electronic ISSN: 2150-3435
    Topics: Geography
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...