ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The ability of an undescribed deep-sea hydrocarbon-seep mussel which contains endosymbiotic methanotrophic bacteria to clear, ingest, and assimilate radiolabeled bacteria (Vibrio pelagicus andEscherichia coli) and algae (Dunaliella tertiolecta) was compared with that of the bay musselMytilus edulis. The seep mussel, collected in August 1987 from the Louisana Slope in the Gulf of Mexico, was slower to clear bacteria and algae thanM. edulis. The ingestion and assimilation of filtered bacteria and algae was established from the presence of radiolabel in mussel tissues and feces. The seep mussel was somewhat less efficient in assimilating radiolabeled components from bacteria and algae thanM. edulis. The dietary carbon maintenance-requirement of the seep mussel could potentially be met at environmental concentrations of greater than 106 bacteria ml−1. At lower concentrations of particulate organic matter, filter-feeding could be an important source of nitrogen and essential nutrients not supplied by the endosymbionts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In situ growth rates were determined, using two, 1-yr mark/recapture experiments, conducted between September 1991 and July 1993, for an undescribed mytilid, Seep Mytilid Ia, at three hydrocarbon seep sites in the Gulf of Mexico. The sites are located at depths of 540 to 730m, approximately 27°45′N; 91°30′W, and are separated by distances of 6 to 18 miles. These seep mytilids harbor methanotrophic endosymbionts and use methane as both a carbon and energy source. The mussel habitats were chemically characterized by analysis of water samples taken from precisely located microenvironments over, among and below the mussels, using small-volume, interstitial water samplers and the “Johnson Sea Link” submersible. Substantial differences were found in habital conditions, growth rates, and population structure for the mussels at the three sites examined. The growth rate of these seep mytilids reflects the methane concentration in their immediate habitat. Mussels at sites with abundant methane had growth rates that were comparable to shallow water mytilids at similar temperatures (5 to 8°C) with increases in shell length up to 17 mm yr−1 documented for smaller mussels (〈40 mm shell length). In conjunction with measurements of growth rates, three condition indices (glycogen content, tissue water content, and the ratio of ash-free dry weight to shell volume) were used to determine the relationship between the condition of the mussels, their growth rates, and their habitat chemistry. The three condition indices were correlated with growth rate and were often significantly different between mussels in different samples.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methane mussels (Bathymodiolus sp., undescribed; personal communication by R. Turner to CRF) were collected in September 1989 and April 1990 from offshore Louisiana in the Gulf of Mexico. These mussels contain endosymbiotic methane-oxidizing bacteria and are capable of utilizing environmental methane as a source of energy and carbon. Oxygen consumption, methane consumption, and carbon dioxide production were measured in mussels with intact symbionts, functionally aposymbiotic mussels, and separated symbiont preparations under controlled oxygen and methane conditions, in order to study the roles of the symbionts and the hosts in methane utilization. The association was found to be very efficient in fixing methane carbon (only ∼30% of CH4 consumed is released as CO2), and to be capable of maximal rates of net carbon uptake of nearly 5 μmol g-1 h-1. Rates of oxygen and methane consumption were dependent upon oxygen and methane concentrations. Maximal consumption rates were measured at 250 to 300 μM O2 and 200 to 300 μM CH4, under which conditions, oxygen consumption by the gill tissues (containing symbionts) had increased more than 50-fold over rates measured in the absence of methane. A model is proposed for the functioning of the intact association in situ, which shows the symbiosis to be capable of achieving growth rates (net carbon assimilation) in the range of 0.003 to 0.50% per day depending upon oxygen and methane concentrations. Under the conditions measured in the seep environment (200 μM O2, 60 μM CH4), a mussel consuming methane at rates found to be typical (4 to 5 μmol g-1 h-1) should have a net carbon assimilation rate of about 0.1% per day. We suggest that the effectiveness of this symbiosis arises through integration of the morphological and physiological characteristics inherent to each of the symbiotic partners, rather than from extensive specialization exhibited by other deep-sea chemotrophic associations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mussels (Bathymodiolus sp., undescribed) that contain endosymbiotic methanotrophic bacteria were collected from the vicinity of hydrocarbon seeps on the Louisiana Slope of the Gulf of Mexico during September 1989 and 1991. In the presence of methane, these mussels took up ammonium and free amino acids (FAA) but not nitrate. Rates of ammonium uptake ranged from 0.11 to 0.78 μmolg-1 h-1 following initial concentrations of 3.7 to 140.0 μM. The relationship between uptake rate and ammonium concentration exhibited by these mussels appears to be non-linear, apparently differing from the linear kinetics exhibited by algal-invertebrate symbioses. Alanine and glycine were depleted from the medium by symbiotic mussels at rates of 0.10 and 0.07 μmolg-1 h-1 following initial concentrations of 1 μM. Given estimates of rates of carbon fixation and ammonium and FAA levels encountered by the mussels in situ, it is likely that ammonium uptake can meet the nitrogen needs of the association, and that acquisition of carbon and nitrogen from FAA uptake may be an important supplement.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seep Mytilid Ia (SMIa), an undescribed mussel found at hydrocarbon seeps in the Gulf of Mexico, harbors intracellular methanotrophic symbionts. Two techniques were used to address the hypothesis that host digestion of symbionts is a significant mechanism of carbon transfer from symbiont to host in the SMIa association: lysosomal enzyme cytochemistry and 14C tissue autoradiography. Acid phosphatase activity was consistently localized in the Golgi apparatus and associated vesicles of gill cells, but was detected around bacteria in only three of approximately 50 bacteriocytes examined. These results indicate that the cellular equipment necessary for lysosomal digestion of symbionts is present in host bacteriocytes, but that acid phosphatase activity in symbiont vacuoles is rare at a given point in time. Tissue autoradiography was conducted with mussels collected in September 1992 to document carbon fixation by symbionts and follow the time course of transfer to host tissues. No asymbiotic host cell type showed a significant increase in relative grain density until at least 1 d after the end of incubation with 14C-methane. The ratio of label in the basal portion of bacteriocytes to total bacteriocyte label did not show a significant increase until 10 d after the end of the incubation period, indicating a slow increase of labeled carbon in the putative residual bodies, containing the remnants of lysosomal digestion. These results are consistent with the hypothesis that host digestion of symbionts is one route of nutrient acquisition in SMIa. Intracellular methanotrophic bacteria were found outside of the gill in SMIa juveniles, in mantle and foot epithelial tissues previously believed to be symbiont-free. These extra-gill symbionts and their host cells are morphologically similar to their gill counterparts and, like the gill symbionts, actively fix carbon from methane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Riftia pachyptila, the giant vestimentiferan tubeworm from the East Pacific Rise, harbors abundant chemolithoautotrophic, sulfide-oxidizing bacteria in an internal organ, the trophosome. Several facts, such as the lack of a digestive system in the host, stable carbon isotope values and net carbon dioxide uptake all suggest that the tubeworms obtain the bulk of their nutrition from their symbionts. Using tissue autoradiography, we investigated the mode of nutritional transfer between symbionts and host, and the site of early incorporation of symbiont fixed-carbon in the host. Fast labeling in the trophosome clearly demonstrates that the symbionts are the primary site of carbon fixation. Appearance of label in some symbiont-free host tissues in as little as 15 min indicates that the symbionts release a significant amount of organic carbon immediately after fixation. The organic carbon is largely incorporated into specific, metabolically active host tissues such as fast-growing body regions in the trunk and plume, and into tube-secreting glands. In addition to immediate release of fixed carbon by the symbionts, there is evidence of a second possible nutritional mode, digestion of the symbionts, which is consistent with previous suggestions based on trophosome ultrastructure. Results suggest that symbiont-containing host cells migrate in a predictable pattern within trophosome lobules and that symbiont division occurs predominately in the center of a lobule, followed eventually by autolysis/digestion at the periphery of the lobule.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 83 (1984), S. 109-124 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Specimens of the hydrothermal vent pogonophoran Riftia pachyptila Jones were collected by submersible at a depth of 2 600 m at the 21°N hydrothermal vent site on the East Pacific Rise (20°50′N, 109°06′W) in April and May of 1982. The worms were maintained in pressurized aquaria for up to 45 d for metabolic studies. Consumption of O2 was regulated down to low PO 2 (oxygen partial pressure) values; O2 consumption rates were 0.63 and 1.12 μ mol g-1 wet wt h-1 at 2.5° and 8°C, respectively; such rates were comparable to those previously measured for other pogonophorans. Intact specimens of R. pachyptila (including bacterial symbionts) did not consume significant amounts of CH4 from the environment. The respiratory quotients, in the absence of added sulfide, indicated that metabolism was mainly heterotrophic. High rates of uptake of dissolved amino acids were recorded for one specimen. The total [CO2] in the vascular blood and the Hb-containing coelomic fluid were high. Under anaerobic conditions, there were equilibrium distributions of pH, total [CO2] and sulfide concentrations between the vascular blood and the coelomic fluid, apparently because these metabolites were readily exchanged between the two compartments. The vascular blood bound neither CH4 nor H2. However, sulfide was reversibly bound by both the vascular blood and coelomic fluid; because this binding depended strongly on pH (with a maximum at about 7.5), HS- was probably the molecular species bound. Under anaerobic, but not aerobic conditions, the trophosome bound substantial amount of sulfide; thus, the high concentrations of sulfide in the trophosome may have resulted mainly from sulfide bound to sulfide oxidases under anaerobic conditions. The coelomic fluid had a relatively low buffering capacity (2.2 mmol CO2ΔpH-1).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The hydrothermal vent vestimentiferans Riftia pachyptila Jones, 1981 and Ridgeia piscesae Jones, 1985 live in habitats with different abundances of external CO2. R. pachyptila is found in areas with a high input of hydrothermal fluid, and therefore with a high [CO2]. R. piscesae is found in a range of habitats with low to high levels of hydrothermal fluid input, with a correspondingly broad range of CO2 concentrations. We examined the strategies for dissolved inorganic carbon (DIC) use by the symbionts from these two species. R. pachyptila were collected from the East Pacific Rise (9°50′N; 104°20′W) in March 1996, and R. piscesae were collected from the Juan de Fuca Ridge (47°57′N; 129°07′W) during September of 1996 and 1997. The differences in the hosts' habitats were reflected by the internal pools of DIC in these organisms. The concentrations of DIC in coelomic fluid from R. piscesae were 3.1 to 10.5 mM, lower than those previously reported for R. pachyptila, which often exceed 30 mM. When symbionts from both hosts were incubated at in situ pressures, their carbon fixation rates increased with the extracellular concentration of CO2, and not HCO3 −, and symbionts from R. piscesae had a higher affinity for CO2 than those from R. pachyptila (K 1/2 of 7.6 μM versus 49 μM). Transmission electron micrographs showed that symbionts from R. piscesae lack carboxysomes, irrespective of the coelomic fluid [DIC] of their host. This suggests that the higher affinity for CO2 of R. piscesae symbionts may be their sole means of compensating for lower DIC concentrations. The δ13C values of tissues from R. piscesae with higher [DIC] in the coelomic fluid were more positive, opposite to the trend previously described for other autotrophs. Factors which may contribute to this trend are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Five species of bivalves and two species of vestimentiferan tubeworms were collected from hydrocarbon seeps in the Gulf of Mexico, and the composition of their free amino acid and related compounds analysed. Like other marine molluscs, taurine, glycine, glutamic acid, and alanine were abundant in the seep bivalves, but, unlike other molluscs, hypotaurine and thiotaurine were also abundant in the seep species. The relative levels of the most abundant amino compounds indicate that glycine is likely to be an important osmoregulatory compound in the bivalves, but not in the vestimentiferans. A consistent pattern of decreasing taurine:glycine ratio with increasing depth was evident in both vent and seep bivalves, and attributed to differences in the relative availability of taurine and glycine in their diet. Additionally, the generally high glutamate levels and higher levels in the symbiont-containing gills are interpreted as consistent with the proposed role of glutamate as a nutritive transfer molecule in these symbioses. The distribution of hypotaurine and thiotaurine in the seep species is discussed in relation to previously proposed hypotheses on the function of these compounds: hypotaurine as an antioxidant, and thiotaurine as a binding and transport molecule for reduced-sulphur species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 377 (1995), S. 296-296 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR — Associations between methanotrophic bacteria and several species of mytilids and a pogonophore have been described in deep-sea communities surrounding hydrothermal vents and cold seeps1. We report here a new symbiosis between a sponge and methanotrophic bacteria. The o C values and ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...