ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 1972-07-01
    Print ISSN: 0022-247X
    Electronic ISSN: 1096-0813
    Topics: Mathematics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: A constrained optimization methodology has been developed which allows specific use of eigensystem freedoms to meet design requirements. A subset of the available eigenvector freedoms was employed. The eigenvector freedoms associated with a particular closed-loop eigenvalue are coefficients of basis vectors which span the subspace in which that closed-loop vector must lie. Design requirements are included as a vector of inequality constraints. The procedure was successfully applied to develop an unscheduled controller which stabilizes symmetric flutter of an aeroelastic vehicle to a dynamic pressure 44 percent above the open-loop flutter point. The design process proceeded from full-state feedback to the inclusion of a full-order observer to the selection of an eighth-order controller which preserved the full-state sensitivity characteristics. Only a subset of the design freedoms was utilized (i.e., assuming full-state feedback only four out of 26 eigenvectors were used, and no variations were made in the closed-loop eigenvalues). Utilization of additional eigensystem freedoms could further improve the controller.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: Recent Advances in Multidisciplinary Analysis and Optimization, Part 2; p 837-859
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An eigenspace assignment approach to the design of parameter insensitive control laws for linear multivariable systems is presented. The control design scheme utilizes flexibility in eigenvector assignments to reduce control system sensitivity to changes in system parameters. The methods involve use of the singular value decomposition to provide an exact description of allowable eigenvectors in terms of a minimum number of design parameters. In a design example, the methods are applied to the problem of symmetric flutter suppression in an aeroelastic vehicle. In this example the flutter mode is sensitive to changes in dynamic pressure and eigenspace methods are used to enhance the performance of a stabilizing minimum energy/linear quadratic regulator controller and associated observer. Results indicate that the methods provide feedback control laws that make stability of the nominal closed loop systems insensitive to changes in dynamic pressure.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-CR-181618 , ICASE-88-9 , NAS 1.26:181618 , AD-A192758
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: Journal of Guidance, Control, and Dynamics (ISSN 0731-5090); 14; 1208-121
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: An eigenspace assignment approach to the design of parameter insensitive control laws for linear multivariable systems is presented. The control design scheme utilizes constrained optimization techniques to exploit the flexibility in eigenvector assignments to reduce control system sensitivity to changes in system parameters while maintaining performance requirements; it thus provides a systematic approach for choosing values for eigensystem design variables. The methods involve use of the singular value decomposition to provide an exact description of allowable eigenvectors in terms of a minimum number of design parameters. In a design example, the methods are applied to the problem of symmetric flutter suppression in an aeroelastic vehicle. In this example the flutter mode is sensitive to changes in dynamic pressure and eigenspace methods are used to enhance the performance of a stabilizing minimum energy/linear quadratic regulator controller and associated observer. Numerical results indicate that the methods provide feedback control laws that make the stability of the nominal closed loop systems less sensitive to changes in dynamic pressure, while maintaining acceptable control power and robustness constraints.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: AIAA PAPER 88-4099 , AIAA Guidance, Navigation and Control Conference; Aug 15, 1988 - Aug 17, 1988; Minneapolis, MN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...