ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-07
    Description: Highlights • The youngest known (2 Ma) volcanically-active subduction system. • Exceptionally diverse range of magma compositions coeval and spatially juxtaposed. • Mixing of an upwelling asthenospheric mantle melt and a slab melt. • Modern example of an immature subduction system building its proto forearc. • Modern analog of the environment where SSZ ophiolites lithosphere forms. Abstract The development of ideas leading to a greater understanding of subduction initiation is limited by the scarcity of present-day examples. Furthermore, the few examples identified so far unfortunately provide few insights into the nature of magmatism at the inception of subduction. Here we report new observations from the Matthew and Hunter (M&H) subduction zone, a very young subduction zone located in the South-West Pacific. Tectonics of the area show it is younger than 2 Ma, making the M&H the youngest known volcanically-active subduction system and hence providing unique insights into the earliest stages of subduction initiation. Volcanism in this area comprises an exceptionally diverse range of contemporaneously erupting magma compositions which are spatially juxtaposed. Pb isotopic compositions and abundance of LILE and REE strongly suggest melting of upwelling asthenospheric mantle (Indian MORB) and subducted oceanic crust (Pacific MORB of the South Fiji Basin) and the mixing of these two components. Volcanism occurs much closer to the trench compared to volcanism in more mature subduction zones. We demonstrate that the M&H subduction zone is a modern example of an immature subduction system at the stage of pre-arc, near-trench magmatism. It is not yet building an arc but what we propose to call a Subduction Initiation Terrane (SITER). Today, the proto-forearc of the M&H subduction zone is a collage of these SITERs, coeval back-arc domains and remnants of pre-existing terranes including old Vitiaz Arc crust. The M&H area represents a modern analog of a Supra Subduction Zone setting where potentially a majority of ophiolites have formed their crustal and lithospheric components. Present-day magmatism in the M&H area therefore provides clues to understanding unforeseen distribution of contrasted magmatic rock types in fossil forearcs, whether they are at the front of mature subduction zones or in ophiolites.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-04-16
    Type: Dataset
    Format: text/tab-separated-values, 23 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-04-16
    Type: Dataset
    Format: text/tab-separated-values, 46 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-09-27
    Type: Dataset
    Format: text/tab-separated-values, 73 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-09-27
    Type: Dataset
    Format: text/tab-separated-values, 141 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-04-16
    Type: Dataset
    Format: text/tab-separated-values, 516 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-04-16
    Type: Dataset
    Format: text/tab-separated-values, 1321 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Terra nova 17 (2005), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: We studied more than 60 oceanic gabbros from the recent oceanic crust and from ophiolites (East Pacific Rise, Mid-Atlantic Ridge, Southwest Indian Ridge, Oman ophiolite) by scanning electron microscopy and found in nearly all samples microstructures suggesting that hydrous partial melting reactions proceeded. The characteristic paragenesis consists of orthopyroxene and pargasite rimming olivine and clinopyroxene primocrysts in intimate contact with neoblastic plagioclase strongly enriched in anorthite. This is in agreement with recent water-saturated melting experiments on a variety of natural gabbros between 900 and 1000 °C. The observed microtextures in the natural gabbros imply the propagation of water-rich fluids on grain boundaries in a ductile regime causing hydrous partial melting. Thus, this type of hydrothermal activity proceeds within the deep oceanic crust at very high temperatures (900–1000 °C) without a crack system, a prerequisite in current models for enabling hydrothermal circulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    facet.materialart.
    PANGAEA
    In:  Supplement to: Koepke, Jürgen; Feig, Sandrin T; Snow, Jonathan E; Freise, Marcus (2004): Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contributions in Mineralogy and Petrology, 146(4), 414-432, https://doi.org/10.1007/s00410-003-0511-9
    Publication Date: 2019-02-13
    Description: We performed hydrous partial melting experiments at shallow pressures (0.2 GPa) under slightly oxidizing conditions (NNO oxygen buffer) on oceanic cumulate gabbros drilled by ODP (Ocean Drilling Program) cruises to evaluate whether the partial melting of oceanic gabbro can generate SiO2-rich melts with compositions typical of oceanic plagiogranites. The experimental melts of the low-temperature runs broadly overlap those of natural plagiogranites. At 940 °C, the normalized SiO2 contents of the experimental melts of all systems range between 60 and 61 wt%, and at 900 °C between 63 and 68 wt%. These liquids are characterized by low TiO2 and FeOtot contents, similar to those of natural plagiogranites from the plutonic section of the oceanic crust, but in contrast to Fe and Ti-rich low-temperature experimental melts obtained in MORB systems at ~950 °C. The ~1,500-m-long drilled gabbroic section of ODP Hole 735B (Legs 118 and 176) at the Southwest Indian Ridge contains numerous small plagiogranitic veins often associated with zones which are characterized by high-temperature shearing. The compositions of the experimental melts obtained at low temperatures match those of the natural plagiogranitic veins, while the compositions of the crystals of low-temperature runs correspond to those of minerals from high-temperature microscopic veins occurring in the gabbroic section of the Hole 735B. This suggests that the observed plagiogranitic veins are products of a partial melting process triggered by a water-rich fluid phase. If the temperature estimations for hightemperature shear zones are correct (up to 1,000 °C), and a water-rich fluid phase is present, the formation of plagiogranites by partial melting of gabbros is probably a widespread phenomenon in the genesis of the ocean crust.
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-10-01
    Description: The influence of oxygen fugacity and water on phase equilibria and the link between redox conditions and water activity were investigated experimentally using a primitive tholeiitic basalt composition relevant to the ocean crust. The crystallization experiments were performed in internally heated pressure vessels at 200 MPa in the temperature range 940–1,220°C. The oxygen fugacity was measured using the H_2-membrane technique. To study the effect of oxygen fugacity, three sets of experiments with different hydrogen fugacities were performed, showing systematic effects on the phase relations and compositions. In each experimental series, the water content of the system was varied from nominally dry to water-saturated conditions, causing a range of oxygen fugacities varying by ~3 log units per series. The range in oxygen fugacity investigated spans ~7 log units. Systematic effects of oxygen fugacity on the stability and composition of the mafic silicate phases, Cr–spinel and Fe–Ti oxides, under varying water contents were recorded. The Mg# of the melt, and therefore also the Mg# of olivine and clinopyroxene, changed systematically as a function of oxygen fugacity. An example of the link between oxygen fugacity and water activity under hydrogen-buffered conditions is the change in the crystallization sequence (olivine and Cr–spinel) due to a change in the oxygen fugacity caused by an increase in the water activity. The stability of magnetite is restricted to highly oxidizing conditions. The absence of magnetite in most of the experiments allows the determination of differentiation trends as a function of oxygen fugacity and water content, demonstrating that in an oxide-free crystallization sequence, water systematically affects the differentiation trend, while oxygen fugacity seems to have a negligible effect. ©2010 Springer-Verlag
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...