ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-21
    Description: Science Board Meeting 2022 — Note from the Science Board Chair. FUTURE SSC’s 8th Annual Meeting ~ Highlights. PICES-2022 and the first hybrid annual meeting. Featuring PICES-2022 Award recipients: (Chair Award, Wooster Award, Zhu-Peterson Award, PICES Ocean Monitoring Service Award, ECS Best Presentation Awards). PICES-2022 Workshop Reports: (W1: Distributions of pelagic, demersal, and benthic species associated with seamounts in the North Pacific Ocean and factors influencing their distributions, W2: Integrated Ecosystem Assessment (IEA) to understand the present and future of the Central Arctic Ocean (CAO) and Northern Bering and Chukchi Seas (NBS-CS), W3: SmartNet: Promoting PICES and ICES Leadership in the UN Decade of Ocean Science for Sustainable Development, W4: Exploring Engagement Opportunities for Early Career Ocean Professionals (ECOPs) within PICES and Internationally, W5: Integrating biological research, fisheries science and management of broadly distributed flatfish species across the North Pacific Ocean in the face of climate and environmental variability, W7: Anthropogenic stressors, mechanisms and potential impacts on Marine Birds, Mammals, and Sea Turtles, W8: Science Communication Training: How to Create Memorable PICES Science Stories, W10: A TCODE Workshop on “Openly Discoverable, Accessible, and Reusable Data and Information in the U.N. Decade”). PICES AP-NPCOOS "Ocean Big Data" Summer School. PICES AP-CREAMS Virtual Summer School on Ocean Turbulence: From Observing to Research. Science and Innovation to Scale Up Ocean Action: UN Ocean Conference 2022. ECOP Perspective on the 4th Early Career Scientist Conference (ECSC4). Symposium in Lisbon Re-unites the Global Community Investigating Small Pelagic Fish. SPF2022 Symposium Workshop Reports: (1: Application of Genetics to Small Pelagic Fish, 2: The Devil’s in the Details of Using Species Distribution Models to Inform Multispecies and Ecosystem Models, 3: Small Pelagics for Whom? Challenges and Opportunities for the Equitable Distribution of Nutritional Benefits, 4: Evaluating Inter-Sectoral Tradeoffs and Community-Level Response to Spatio-Temporal Changes in Forage Distribution and Abundance, 5: Recent Advances in the Daily Egg Production Method (DEPM): Challenges and Opportunities, 6: Small Pelagic Fish Reproductive Resilience). SOLAS Open Science Conference, 2022. Early Career Scientist Participation in SOLAS Open Science Conference, 2022. PICES SeaTurtle researchers find clues linking derelict fishing lines of “Urban Fishermen” to sea turtle stranding. NPAFC's IYS Synthesis Symposium - Key Takeaways. The Bering Sea: Current Status and Recent Trends. Western North Pacific: Current status and recent topic: Sea Surface Temperature during the 2022 warm season, The Northeast Pacific: Update on marine heatwave status and trends. PICES Events Calendar. PICES by the Numbers, and an Invitation to join SG-GREEN. Open call for PICES Press submissions | About PICES Press
    Description: Published
    Description: Non Refereed
    Repository Name: AquaDocs
    Type: Book/Monograph/Conference Proceedings
    Format: 111
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Subirrigation (SI), where water is provided to container seedlings from below and rises through the growing media via capillary action, is regarded as an environmentally-responsible method of delivering water and fertilizer to nursery-grown plants, resulting in more uniform crops and improved production efficiency. While a concern around adopting this method is that a potential higher salt concentration in the upper layers of growing media under SI may inhibit root growth and result in decreased plant quality, few studies have focused on how root morphology is altered by SI. Therefore, a balanced two-factor factorial design with three rates of fertilization (50, 100, and 150 mg N seedling−1) and two irrigation methods (SI or overhead irrigation (OI)) was used to examine the growth response of Prince Rupprecht’s larch (Larix principis-rupprechtii Mayr) seedlings for one nursery season. Associated changes between rhizosphere electrical conductivity (EC) and root morphology of different root size classes were analyzed. Results show that (1) height, root-collar diameter, and root volume were similar between seedlings grown under SI and OI. However, (2) compared to seedlings receiving OI, SI-seedlings had less root mass, length, and surface area but greater average root diameter (ARD). (3) Morphological differences were evident primarily in root diameter size classes I–III (D ≤ 1.0 mm). (4) Fertilizer rate influenced root length and surface area up to 130 days after sowing but affected ARD throughout the growing season such that seedlings treated with 50 mg N had smaller ARD than seedlings treated with 100 mg N. (5) As the growing season progressed, SI-media had significantly higher EC compared to OI-media and EC increased with increasing fertilizer rate under SI but not under OI. These results indicate that SI can produce larch seedlings of similar height and root collar diameter (RCD) compared to OI, but root systems are smaller overall with fewer small-diameter roots, which may be related to high EC levels in SI-media, which is exacerbated by the use of high rates of fertilizer. Therefore, the EC in the media should be monitored and adjusted by reducing fertilizer rates under SI.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Plant growth depends on soil mineral elements, a lack of which results in reduced nutrient accumulation leading to poor growth and resistance in plants. Therefore, more information is needed about the response of Pistacia chinensis Bunge (P. chinensis) seedlings to nutrient deficiency. In this study, we investigated how soil nutrient availability affects the nutrient accumulation and root system of P. chinensis seedlings. Seedlings were cultivated under five different nutrient treatments (500 mg, 400 mg, 300 mg, 200 mg, and 100 mg N). Various indices, including seedling growth, nutrient accumulation and root morphology, were analyzed at the end of the growing season. Nutrient deficiency (300 mg, 200 mg, and 100 mg N) reduced the accumulation of nitrogen (N), phosphorus (P) and potassium (K) in roots and stems, while the nutrient proportion of N, P, and K stored in the roots and root to shoot ratio (R/S) was increased at the end of growing season. Root length, root surface area, and root volume of very fine roots (〈0.5 mm in diameter) and coarse roots (〉3.0 mm in diameter) of the three lower nutrient treatments were significantly lower than those of the two highest nutrient treatments, while no significant difference was detected in the fine roots (1.0–3.0 mm in diameter). Instead, foliar N and K contents in seedlings treated with the two highest treatments were significantly greater than those of the three lower nutrient treatments, resulting in a greater nutrient loss ratio. However, seedlings treated with 100 mg N had significantly higher foliar P content than those treated with 500 mg. Seedlings treated with 300 mg and 200 mg N did not have restricted root nutrient accumulation but did have reduced nutrient accumulation in the stems. The 100 mg N treatment significantly reduced the root nutrient accumulation of N and K. The 500 mg N treatment did not increase the accumulation of nutrients in the storage organs compared with the 400 mg N treatment, but did increase the loss of N and K due to defoliation in autumn. In conclusion, there is a threshold for nutrient accumulation in storage organs at the nursery stage under a specific environment. P. chinensis seedlings reduced the negative effects of nutrient deficiency by promoting root growth, particularly fine roots, and increasing N and K allocation in storage organs.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...