ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-02-07
    Description: The Hs1(pro-1) locus confers resistance to the beet cyst nematode (Heterodera schachtii Schmidt), a major pest in the cultivation of sugar beet (Beta vulgaris L.). The Hs1(pro-1) gene was cloned with the use of genome-specific satellite markers and chromosomal break-point analysis. Expression of the corresponding complementary DNA in a susceptible sugar beet conferred resistance to infection with the beet cyst nematode. The native Hs1(pro-1) gene, expressed in roots, encodes a 282-amino acid protein with imperfect leucine-rich repeats and a putative membrane-spanning segment, features similar to those of disease resistance genes previously cloned from higher plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cai, D -- Kleine, M -- Kifle, S -- Harloff, H J -- Sandal, N N -- Marcker, K A -- Klein-Lankhorst, R M -- Salentijn, E M -- Lange, W -- Stiekema, W J -- Wyss, U -- Grundler, F M -- Jung, C -- New York, N.Y. -- Science. 1997 Feb 7;275(5301):832-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Crop Science and Plant Breeding, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, D-24118 Kiel, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9012350" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Membrane/chemistry ; *Cloning, Molecular ; DNA, Complementary/genetics ; *Genes, Plant ; Genetic Complementation Test ; Leucine/chemistry ; Membrane Proteins/chemistry/*genetics/physiology ; Molecular Sequence Data ; Nematoda/*pathogenicity ; Plant Diseases/*genetics/parasitology ; *Plant Proteins ; Plant Roots/genetics/parasitology ; Transformation, Genetic ; Vegetables/*genetics/*parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 98 (1992), S. 165-173 
    ISSN: 1573-8469
    Keywords: Heterodera schachtii ; Meloidogyne incognita ; Arabidopsis thaliana ; video ; light microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract With the aid of video-enhanced contrast light microscopy the feeding behavior of the cyst nematodeHeterodera schachtii and the root-knot nematodeMeloidogyne incognita has been studied in roots of various cruciferous plants, especially inArabidopsis thaliana, a model plant for molecular studies. The juvenile stage 2 (J2) nematodes ofH. schachtii migrate intracellularly with destructive stylet thrusts before establishing their permanent feeding site (syncytium) within the vascular cylinder. After the selection of the initial syncytial cell (ISC) they undergo a preparation period before they start feeding from the ISC. During all developmental stages feeding occurs in cycles, composed of three distinct phases. In contrast, the J2 ofMeloidogyne incognita reach their permanent feeding site by intercellular migration, first towards the apex of the root, where they turn round, and move towards the differentiating vascular cylinder. A characteristic behavioral pattern, composed of continuous head and stylet movements, interspersed by periods of stylet-tip protrusion and metacorpal bulb pumping is maintained during all phases of parasitism, i.e., root invasion, intercellular migration and feeding from the giant-cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1615-6102
    Keywords: Arabidopsis thaliana ; Cyst nematodes ; Development ; Histology ; Syncytium ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The beet cyst nematodeHeterodera schachtii is able to establish a feeding structure (syncytium) in the vascular tissue of roots and shoots ofArabidopsis thaliana. Histological and ultrastructural studies were performed to assess plant responses during the development of juvenile females under monoxenic conditions. After destructively invading a root the nematode selects and pierces a single procambial cell with its stylet and transforms it into an initial syncytial cell (ISC) by secretory activity. The first most obvious changes in the ISC occur in the vacuolar system and at the wall. Differentiation of a central vacuole is impeded resulting in the formation of numerous small vacuoles. Multivesicular and paramural bodies are formed. An electron translucent material is deposited on the cell wall. Partial dissolution of the cell wall leads to the formation of a syncytium. At the juveniles' last pre-adult developmental stage the syncytium attains its maximum longitudinal and radial extension, occupying a major part of the central cylinder. Its features are indicative of a very high level of metabolic activity. The hypertrophied syncytium is ensheathed by a peridermal cover in which secondary xylem and phloem elements are interspersed. When females die the syncytia degenerate. The ultrastructural and histological features of syncytia described from roots are also found in syncytia induced in aerial parts of the plant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1615-6102
    Keywords: Beta vulgaris ; Cyst nematodes ; Histology ; Resistance mechanism ; Syncytium ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Using susceptible and resistant sugar beet lines, comparative analyses of root histology and ultrastructure were made during invasion by nematodes and the induction and formation of specific feeding structures (syncytia).The resistant line carried the resistance geneHs1pro−1.Nematodes were able to invade and induce functional syncytia in roots of resistant and susceptible lines. However, syncytia in resistant roots were smaller and less hypertrophied. The vacuolar system of syncytia in susceptible plants contained many small vacuoles. In resistant plants vacuoles were larger but less numerous. Smooth endoplasmic reticulum prevailed in syncytial protoplasts of susceptible plants, whereas almost only rough endoplasmic reticulum occurred in syncytia in resistant plants. The most conspicuous and hitherto undescribed trait of syncytia in resistant roots was the initial appearance of loose, and later compact, aggregations of the endomembrane system which composed most of the endoplasmicreticulum system of syncytia at later stages. Syncytia in resistant plants usually degraded before the nematodes reached their adult stage. The appearance of membrane aggregations and the other resistance-specific features are discussed in relation to their possible effects on syncytium function and role in nematode resistance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-10-14
    Description: Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: 〈sec〉〈st〉Synopsis〈/st〉〈p〉〈textbox textbox-type="graphic"〉〈p〉〈inline-fig〉〈/inline-fig〉〈/p〉〈/textbox〉〈/p〉 〈p〉Damage affecting large cell populations is communicated to neighboring and distal tissues by mobile signals in plants. This study reveals that single cell tissue damage in roots triggers a regional, non-systemic ethylene response that can act as a defense mechanism against microscopic invaders such as nematodes.〈/p〉 〈p〉 〈l type="unord"〉〈li〉〈p〉Single root-cell wounding by laser ablation causes regional surface potential changes, calcium waves, and production of reactive oxygen species.〈/p〉〈/li〉 〈li〉〈p〉Laser ablation in roots does not induce jasmonate responses, but regional ethylene production and signaling.〈/p〉〈/li〉 〈li〉〈p〉Activation of ethylene signaling requires a distinct set of calcium channels and NADPH oxidases.〈/p〉〈/li〉 〈li〉〈p〉Nematode attack elicits analogous responses to laser ablation.〈/p〉〈/li〉 〈li〉〈p〉Ethylene signaling limits nematode feeding and delays initial syncytial phase establishment.〈/p〉〈/li〉〈/l〉 〈/p〉〈/sec〉
    Print ISSN: 0261-4189
    Electronic ISSN: 1460-2075
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: 〈p〉Plants are exposed to cellular damage by mechanical stresses, herbivore feeding, or invading microbes. Primary wound responses are communicated to neighboring and distal tissues by mobile signals. In leaves, crushing of large cell populations activates a long-distance signal, causing jasmonate production in distal organs. This is mediated by a cation channel-mediated depolarization wave and is associated with cytosolic Ca〈sup〉2+〈/sup〉 transient currents. Here, we report that much more restricted, single-cell wounding in roots by laser ablation elicits non-systemic, regional surface potential changes, calcium waves, and reactive oxygen species (ROS) production. Surprisingly, laser ablation does not induce a robust jasmonate response, but regionally activates ethylene production and ethylene-response markers. This ethylene activation depends on calcium channel activities distinct from those in leaves, as well as a specific set of NADPH oxidases. Intriguingly, nematode attack elicits very similar responses, including membrane depolarization and regional upregulation of ethylene markers. Moreover, ethylene signaling antagonizes nematode feeding, delaying initial syncytial-phase establishment. Regional signals caused by single-cell wounding thus appear to constitute a relevant root immune response against small invaders.〈/p〉
    Print ISSN: 0261-4189
    Electronic ISSN: 1460-2075
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...