ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2019
    Description: Abstract The exchange of water masses between the Indian Ocean and the Atlantic constitutes an integral interocean link in the global thermohaline circulation. Long‐term changes in deep water flow have been studied using seismic reflection profiles but the seismic stratigraphy was poorly constrained and not resolved for the time period from the late Miocene onward. Here we present results from International Ocean Discovery Program Site U1475 (Agulhas Plateau) located over a sediment drift proximal to the entrance of North Atlantic Deep Water into the Southern Ocean and South Indian Ocean. Site U1475 comprises a complete carbonate‐rich stratigraphic section of the last ~7 Ma that provides an archive of climate‐induced variations in ocean circulation. Six marker reflectors occurring in the upper 300 m of the drift are identified here for the first time. The formation of these reflectors is mainly due to density changes that are mostly caused by changes in biogenic versus terrigenous sediment deposition. Synthetic seismograms allow age assignments for the horizons based on biostratigraphy and magnetostratigraphy. Prominent reflectors are related to late Pleistocene glacial/interglacial variability, the middle and early Pleistocene transitions, and the onset of the northern hemisphere glaciation. A peculiar early Pliocene interval (~5.3–4.0 Ma) bounded by two reflectors is characterized by fourfold elevated sedimentation rates (〉10 cm/kyr) and the occurrence of sediment waves. We argue that this enhanced sediment transport to the Agulhas Plateau was caused by a reorganization of the bottom current circulation pattern due to maximized inflow of North Atlantic Deep Water.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-19
    Description: In 2016 the International Ocean Discovery Program (IODP) Expedition 361 (“SAFARI”) recovered complete high-resolution Plio-/Pleistocene sediment sections at six drilling locations on the southeast African margin and at the oceanic connection between the Indian and South Atlantic Oceans. Site U1475 is located on the southern flank of the Agulhas Plateau, proximal to the entrance of North Atlantic Deep Water (NADW) to the Southern Ocean and South Indian Ocean. The site was drilled into a sediment drift in 2669 m water depth and comprises a complete carbonate rich (74 – 85%) stratigraphic section of the last ~7 Ma. The contourite deposits hold detailed information on past changes in the bottom water flow history in the Indian-Atlantic ocean gateway. Here we present results from the integration of physical properties, seismic reflection data, and major element records. The whole spliced sediment record (292 meters) of Site U1475 was measured using an X-ray fluorescence (XRF) core scanner to derive multi-centennial resolution records of major element intensities. Based on these measurements it is possible to derive biogenic (e.g. %CaCO3) and siliciclastic (e.g. TiO2, K2O) mineral phases. Elemental log-ratios, such as Ca/Ti and K/Fe, reflect variations in biogenic (CaCO3) vs. terrigenous supply and variability of the terrigenous provenance, respectively. While long-term changes in physical properties and elemental ratios can be linked to the seismic reflection patterns associated with deep water circulation changes, short-term cyclicities reflect Plio-Pleistocene climate variations at Milanlovitch-frequencies. Evolutionary spectra show that the orbital control on sediment composition was variable over time. During the last 4 Ma energy is concentrated at the 41ka band of obliquity and at lower frequencies. In contrast, the orbital precession cycle (19-23ka) is very prominent in a peculiar high sedimentation rate interval in the early Pliocene (~4 to 5 Ma) that is bounded by seismic reflectors and characterized by the development of sediment waves.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-21
    Description: An important element of the global ocean thermohaline circulation is the oceanic connection between the Indian and South Atlantic Oceans off South Africa. Variable amounts of warm, salt-enriched South Indian Ocean waters enter the South Atlantic, the so-called ‘warm water return route’, and provide a source for heat and salt to the Atlantic thermocline that ultimately preconditions the Atlantic meridional overturning circulation for convection in the north, the formation of North Atlantic Deep Water (NADW). This eastward surface return flow is compensated at depth by a westward setting deep flow into the southern Indian Ocean that consists of NADW exiting the South Atlantic and Southern Source Waters (SSW), influenced by the Antarctic Circumpolar Current (ACC). Here we present a high-resolution multi-proxy record of deep water variability from sediment core MD02-2588 (2907 m water depth) and IODP Site U1475 (2669 m water depth) both recovered from the southern flank of the Agulhas Plateau in the southernmost South Atlantic. The location is close to the interface between NADW and SSW in the Southern Ocean enabling the reconstruction of the timing and amplitude of changes in southward advection of NADW and Southern Ocean circulation. We concentrate on identifying the phasing between changes in ice volume, the location of surface ocean fronts, deep ventilation and near-bottom flow speeds over the past 1.5 Ma – across the Middle Pleistocene transition. Our benthic carbon isotope record from MD02-2588/Site U1475 strongly suggest that there was a continued mid-depth northern source water influence over the southern Agulhas Plateau during glacial periods of the past 1.5 Ma. Nonetheless, significantly increased near bottom flow speeds, ~5–10 cm s−1 (3–7 μm coarser), during glacial periods indicates that there must be additional controls on physical ventilation. We suggest that vigor of near bottom currents on the Southern Agulhas Plateau is likely influenced by the orbital scale meridional expansion and contraction of the ACC and its associated surface fronts.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-12-21
    Description: Contourite deposits found in the Indian-Atlantic ocean gateway hold detailed information on past changes in the bottom water flow history over long time intervals of the Cenozoic. Until IODP Exp. 361 only late Pleistocene paleoceanographic studies for the region were carried out using sediment samples obtained from piston cores. We present preliminary results from Site U1475 (Agulhas Plateau), a location proximal to the entrance of North Atlantic Deep Water (NADW) to the Southern Ocean and South Indian Ocean. The site is located over a sediment drift in 2669 m water depth and comprises a complete stratigraphic section of the last ∼7 Ma. The whole spliced sediment record (292 meters) of Site U1475 was measured using an X-ray fluorescence (XRF) core scanner to derive multi-centennial resolution records of major element intensities. Based on these measurements it is possible to derive of biogenic (e.g. %CaCO3) and siliciclastic (e.g. TiO2, K2O) mineral phases. Because the Ca counts almost exclusively stem from biogenic carbonate formed by microfossil shells the ratio of biogenic components vs. terrigenous is reflected in e.g. the Ca/Ti or Ca/Fe records. On the other hand, changes of elemental ratios such as K/Fe or Al/Ti show the variability within the terrigenous sediment fraction. While long-term changes in elemental ratios can be linked to the seismic reflection pattern associated with deep water circulation changes, short-term cyclicities in sediment provenance reflect orbital scale Plio-Pleistocene climate variations. E. g. power spectra performed on the ln(Ca/Ti) and ln(K/Fe) records for a peculiar Pliocene (~5.7 - 4.1 Ma) high sedimentation rate interval reveal significant spectral density peaks at periods close to the Milankovitch precession band (19 – 23 kyr). Such a high variability in the precession band is also evident in a number of other element ratios while changes in physical properties (e.g. density, seismic impedance) for the same interval seem to be dominated by eccentricity. We present evolutionary spectral analyses revealing how the orbital response of the different parameters have changed over time and derive an improved age model based on cyclostratigraphy.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  EPIC312th International Conference on Paleoceanography (ICP12), Utrecht, The Netherlands, 2016-08-29-2016-09-02
    Publication Date: 2016-10-09
    Description: IODP Expedition 361 drilled six sites on the southeast African margin and in the Indian-Atlantic ocean gateway, southwest Indian Ocean, from 30 January to 31 March 2016. The sites, situated in the Mozambique Channel, at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and the Cape Basin were targeted to reconstruct the history of the Greater Agulhas Current System over the past ~ 5 Ma. The main objectives of the expedition were to establish the sensitivity of the Agulhas Current to climatic changes during the Plio-Pleistocene, to determine the dynamics of the Indian-Atlantic gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, to address the influence of the Agulhas Current on African terrestrial climates and potential links to human evolution. Additionally, the Expedition set out to fulfill the needs of the APL, consisting of high-resolution interstitial water samples that will constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. Here we highlight some of the expedition successes and show how it has made major strides toward fulfilling each of these objectives. The recovered sequences allowed complete spliced stratigraphic sections to be generated spanning the interval of 0 to between ~0.13 and 7 Ma. These sediments provide an exceptional opportunity to generate decadal to millennial-scale climatic records that will resolve key paleoceanographic questions from a region poorly represented in the database of scientific drills sites.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-03-17
    Description: The exchange of water masses between the Indian Ocean and the Atlantic constitutes an integral interocean link in the global thermohaline circulation. Long‐term changes in deep water flow have been studied using seismic reflection profiles but the seismic stratigraphy was poorly constrained and not resolved for the time period from the late Miocene onward. Here we present results from International Ocean Discovery Program Site U1475 (Agulhas Plateau) located over a sediment drift proximal to the entrance of North Atlantic Deep Water into the Southern Ocean and South Indian Ocean. Site U1475 comprises a complete carbonate‐rich stratigraphic section of the last ~7 Ma that provides an archive of climate‐induced variations in ocean circulation. Six marker reflectors occurring in the upper 300 m of the drift are identified here for the first time. The formation of these reflectors is mainly due to density changes that are mostly caused by changes in biogenic versus terrigenous sediment deposition. Synthetic seismograms allow age assignments for the horizons based on biostratigraphy and magnetostratigraphy. Prominent reflectors are related to late Pleistocene glacial/interglacial variability, the middle and early Pleistocene transitions, and the onset of the northern hemisphere glaciation. A peculiar early Pliocene interval (~5.3–4.0 Ma) bounded by two reflectors is characterized by fourfold elevated sedimentation rates (〉10 cm/kyr) and the occurrence of sediment waves. We argue that this enhanced sediment transport to the Agulhas Plateau was caused by a reorganization of the bottom current circulation pattern due to maximized inflow of North Atlantic Deep Water.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    International Ocean Discovery Program
    In:  EPIC3International Ocean Discovery Program, 46 p.
    Publication Date: 2016-06-03
    Description: International Ocean Discovery Program (IODP) Expedition 361 drilled six sites on the southeast African margin and in the Indian- Atlantic ocean gateway, southwest Indian Ocean, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the greater Agulhas Cur- rent system over the past ~5 my. The Agulhas Current is the stron- gest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm, saline surface water from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influ- ence southern African climates, including individual weather sys- tems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in con- trolling the strength and mode of the Atlantic Meridional Overturn- ing Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that act as control mechanisms on the basin-wide AMOC, with implications for convective activity in the North At- lantic and global climate change. The main objectives of the expedi- tion were to establish the sensitivity of the Agulhas Current to climatic changes during the Pliocene–Pleistocene, to determine the dynamics of the Indian-Atlantic gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, and to address the influence of the Agulhas Current on Af- rican terrestrial climates and coincidences with human evolution. Additionally, the expedition set out to fulfill the needs of the Ancil- lary Project Letter, consisting of high-resolution interstitial water samples that will constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. The expedition made major strides toward fulfilling each of these objectives. The recovered sequences allowed generation of complete spliced stratigraphic sections that span from 0 to between ~0.13 and 7 Ma. This sediment will provide decadal- to millennial- scale climatic records that will allow answering the paleoceano- graphic and paleoclimatic questions set out in the drilling proposal.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-24
    Description: Detailed alternating field (AF) demagnetization of Natural Remanent Magnetization (NRM) were conducted on discrete samples of IODP Site U1475, complemented by Anhysteretic Remanent Magnetization acquisition measurements (ARM_acq) and subsequent demagnetization (ARM_demag). AF demagnetization data of NRM were analyzed using anchored Principal Component Analysis (PCA) to obtain the Characteristic Remanent Magnetization (ChRM).
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-06-27
    Keywords: 361-U1478; AGE; COMPCORE; Composite Core; DEPTH, sediment/rock; East Africa; Exp361; hydroclimate; Indian Ocean; Joides Resolution; Organic Geochemistry; Plio-Pleistocene; Pollen; Sea surface temperature; South African Climates (Agulhas LGM Density Profile); δ Deuterium, standard deviation; δ Deuterium, wax
    Type: Dataset
    Format: text/tab-separated-values, 486 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-27
    Keywords: 361-U1478; AGE; Branched and isoprenoid tetraether index; Calculated, TEX86; COMPCORE; Composite Core; DEPTH, sediment/rock; East Africa; Exp361; hydroclimate; Indian Ocean; Joides Resolution; Organic Geochemistry; Plio-Pleistocene; Pollen; Sea surface temperature; South African Climates (Agulhas LGM Density Profile); Tetraether index of 86 carbon atoms
    Type: Dataset
    Format: text/tab-separated-values, 765 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...