ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: 9781119606918 (e-book)
    Description / Table of Contents: "Python is a modern programming language that has exploded in popularity both inside and outside of the Earth science community. Part of its appeal is it's easy-to-learn syntax and the thousands of available libraries which can be synthesized with core Python to do nearly any computing task imaginable. In particular, Python is useful for reading Earth-observing satellite datasets, which can be notoriously difficult to use due to the volume of information that results from the multitude of sensors, platforms, and spatio-temporal spacing. Python facilitates reading a variety of self-describing binary datasets that these observations are often encoded in. Using the same software, one can complete the entirerty of a research project and even produce plots. Within a notebook environment, the scientist can document and distribute the code which can improve efficiency and transparency within the Earth sciences community. Even with the right tools data are seldom ready off-the-shelf for analysis and research and requires a number of pre-processing steps to make the data useable. What steps to take and why are often except perhaps for data developers themselves. Data users often misunderstand concepts such as data quality, how to perform an atmospheric correction, or the complex regridding schemes necessary to compare data with different resolutions. Even to a technical user, the nuances can be frustrating and difficult to overcome. The consequence of this is that data remains unused, or worse, potentially misused"
    Type of Medium: 12
    Pages: 1 Online-Ressource (300 Seiten) , Illustrationen, Diagramme, Karten
    ISBN: 9781119606918
    Series Statement: Special publications / American Geophysical Union 75
    Language: English
    Note: Contents -- Foreword -- Acknowledgments -- Introduction -- Part I Overview of Satellite Datasets -- Chapter 1 A Tour of Current Satellite Missions and Products -- 1.1 History of Computational Scientific Visualization -- 1.2 Brief Catalog of Current Satellite Products -- 1.2.1 Meteorological and Atmospheric Science -- 1.2.2 Hydrology -- 1.2.3 Oceanography and Biogeosciences -- 1.2.4 Cryosphere -- 1.3 The Flow of Data from Satellites to Computer -- 1.4 Learning Using Real Data and Case Studies -- 1.5 Summary -- References -- Chapter 2 Overview of Python -- 2.1 Why Python? -- 2.2 Useful Packages for Remote Sensing Visualization -- 2.2.1 NumPy -- 2.2.2 Pandas -- 2.2.3 Matplotlib -- 2.2.4 netCDF4 and h5py -- 2.2.5 Cartopy -- 2.3 Maturing Packages -- 2.3.1 xarray -- 2.3.2 Dask -- 2.3.3 Iris -- 2.3.4 MetPy -- 2.3.5 cfgrib and eccodes -- 2.4 Summary -- References -- Chapter 3 A Deep Dive into Scientific Data Sets -- 3.1 Storage -- 3.1.1 Single Values -- 3.1.2 Arrays -- 3.2 Data Formats -- 3.2.1 Binary -- 3.2.2 Text -- 3.2.3 Self-Describing Data Formats -- 3.2.4 Table-Driven Formats -- 3.2.5 geoTIFF -- 3.3 Data Usage -- 3.3.1 Processing Levels -- 3.3.2 Product Maturity -- 3.3.3 Quality Control -- 3.3.4 Data Latency -- 3.3.5 Reprocessing -- 3.4 Summary -- References -- Part II Practical Python Tutorials for Remote Sensing -- Chapter 4 Practical Python Syntax -- 4.1 "Hello Earth" in Python -- 4.2 Variable Assignment and Arithmetic -- 4.3 Lists -- 4.4 Importing Packages -- 4.5 Array and Matrix Operations -- 4.6 Time Series Data -- 4.7 Loops -- 4.8 List Comprehensions -- 4.9 Functions -- 4.10 Dictionaries -- 4.11 Summary -- References -- Chapter 5 Importing Standard Earth Science Datasets -- 5.1 Text -- 5.2 NetCDF -- 5.2.1 Manually Creating a Mask Variable Using True and False Values. -- 5.2.2 Using NumPy Masked Arrays to Filter Automatically -- 5.3 HDF -- 5.4 GRIB2 -- 5.5 Importing Data Using Xarray -- 5.5.1 netCDF -- 5.5.2 Examining Vertical Cross Sections -- 5.5.3 Examining Horizontal Cross Sections -- 5.5.4 GRIB2 using Cfgrib -- 5.5.5 Accessing Datasets Using OpenDAP -- 5.6 Summary -- References -- Chapter 6 Plotting and Graphs for All -- 6.1 Univariate Plots -- 6.1.1 Histograms -- 6.1.2 Barplots -- 6.2 Two Variable Plots -- 6.2.1 Converting Data to a Time Series -- 6.2.2 Useful Plot Customizations -- 6.2.3 Scatter Plots -- 6.2.4 Line Plots -- 6.2.5 Adding Data to an Existing Plot -- 6.2.6 Plotting Two Side-by-Side Plots -- 6.2.7 Skew-T Log-P -- 6.3 Three Variable Plots -- 6.3.1 Filled Contour Plots -- 6.3.2 Mesh Plots -- 6.4 Summary -- References -- Chapter 7 Creating Effective and Functional Maps -- 7.1 Cartographic Projections -- 7.1.1 Geographic Coordinate Systems -- 7.1.2 Choosing a Projection -- 7.1.3 Some Common Projections -- 7.2 Cylindrical Maps -- 7.2.1 Global Plots -- 7.2.2 Changing Projections -- 7.2.3 Regional Plots -- 7.2.4 Swath Data -- 7.2.5 Quality Flag Filtering -- 7.3 Polar Stereographic Maps -- 7.4 Geostationary Maps -- 7.5 Creating Maps from Datasets Using OpenDAP -- 7.6 Summary -- References -- Chapter 8 Gridding Operations -- 8.1 Regular One-Dimensional Grids -- 8.2 Regular Two-Dimensional Grids -- 8.3 Irregular Two-Dimensional Grids -- 8.3.1 Resizing -- 8.3.2 Regridding -- 8.3.3 Resampling -- 8.4 Summary -- References -- Chapter 9 Meaningful Visuals through Data Combination -- 9.1 Spectral and Spatial Characteristics of Different Sensors -- 9.2 Normalized Difference Vegetation Index (NDVI) -- 9.3 Window Channels -- 9.4 RGB -- 9.4.1 True Color -- 9.4.2 Dust RGB -- 9.4.3. Fire/Natural RGB -- 9.5 Matching with Surface Observations -- 9.5.1 With User-Defined Functions -- 9.5.2 With Machine Learning. -- 9.6 Summary -- References -- Chapter 10 Exporting with Ease -- 10.1 Figures -- 10.2 Text Files -- 10.3 Pickling -- 10.4 NumPy Binary Files -- 10.5 NetCDF -- 10.5.1 Using netCDF4 to Create netCDF Files -- 10.5.2 Using Xarray to Create netCDF Files -- 10.5.3 Following Climate and Forecast (CF) Metadata Conventions -- 10.6 Summary -- Part III Effective Coding Practices -- Chapter 11 Developing a Workflow -- 11.1 Scripting with Python -- 11.1.1 Creating Scripts Using Text Editors -- 11.1.2 Creating Scripts from Jupyter Notebook -- 11.1.3 Running Python Scripts from the Command Line -- 11.1.4 Handling Output When Scripting -- 11.2 Version Control -- 11.2.1 Code Sharing though Online Repositories -- 11.2.2 Setting up on GitHub -- 11.3 Virtual Environments -- 11.3.1 Creating an Environment -- 11.3.2 Changing Environments from the Command Line -- 11.3.3 Changing Environments in Jupyter Notebook -- 11.4 Methods for Code Development -- 11.5 Summary -- References -- Chapter 12 Reproducible and Shareable Science -- 12.1 Clean Coding Techniques -- 12.1.1 Stylistic Conventions -- 12.1.2 Tools for Clean Code -- 12.2 Documentation -- 12.2.1 Comments and Docstrings -- 12.2.2 README File -- 12.2.3 Creating Useful Commit Messages -- 12.3 Licensing -- 12.4 Effective Visuals -- 12.4.1 Make a Statement -- 12.4.2 Undergo Revision -- 12.4.3 Are Accessible and Ethical -- 12.5 Summary -- References -- Conclusion -- Appendix A Installing Python -- A.1. Download Tutorials for This Book -- A.2. Download and Install Anaconda -- A.3. Package Management in Anaconda -- Appendix B Jupyter Notebook -- B.1. Running on a Local Machine (New Coders) -- B.2. Running on a Remote Server (Advanced) -- B.3. Tips for Advanced Users -- B.3.1. Customizing Notebooks with Configuration Files -- B.3.2. Starting and Ending Python Scripts -- B.3.3. Creating Git Commit Templates. -- Appendix C Additional Learning Resources -- Appendix D Tools -- D.1. Text Editors and IDEs -- D.2. Terminals -- Appendix E Finding, Accessing, and Downloading Satellite Datasets -- E.1. Ordering Data from NASA EarthData -- E.2. Ordering Data from NOAA/CLASS -- Appendix F Acronyms -- Index -- EULA.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-10-06
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-12
    Description: The National Aeronautics and Space Administration (NASA) Short-term Prediction Research and Transition Center (SPoRT) has been part of a collaborative effort within the National Oceanic and Atmospheric Administration (NOAA) Joint Polar Satellite System (JPSS) Proving Ground and Risk Reduction (PGRR) Program to develop gridded satellite sounding retrievals for the operational weather forecasting community. The NOAA Unique Combined Atmospheric Processing System (NUCAPS) retrieves vertical profiles of temperature, water vapor, trace gases, and cloud properties derived from infrared and microwave sounder measurements. A new, optimized method for deriving NUCAPS level 2 horizontally and vertically gridded products is described here. This work represents the development of approaches to better synthesize remote sensing observations that ultimately increase the availability and usability of NUCAPS observations. This approach, known as “Gridded NUCAPS”, was developed to more effectively visualize NUCAPS observations to aid in the quick identification of thermodynamic spatial gradients. Gridded NUCAPS development was based on operations-to-research feedback and is now part of the operational National Weather Service display system. In this paper, we discuss how Gridded NUCAPS was designed, how relevant atmospheric fields are derived, its operational application in pre-convective weather forecasting, and several emerging applications that expand the utility of NUCAPS for monitoring phenomena such as fire weather, the Saharan Air Layer, and stratospheric air intrusions.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-03-10
    Description: In this paper, we describe how researchers and weather forecasters work together to make satellite sounding data sets more useful in severe weather forecasting applications through participation in National Oceanic and Atmospheric Administration (NOAA)’s Hazardous Weather Testbed (HWT) and JPSS Proving Ground and Risk Reduction (PGRR) program. The HWT provides a forum for collaboration to improve products ahead of widespread operational deployment. We found that the utilization of the NOAA-Unique Combined Atmospheric Processing System (NUCAPS) soundings was improved when the product developer and forecaster directly communicated to overcome misunderstandings and to refine user requirements. Here we share our adaptive strategy for (1) assessing when and where NUCAPS soundings improved operational forecasts by using real, convective case studies and (2) working to increase NUCAPS utilization by improving existing products through direct, face-to-face interaction. Our goal is to discuss the lessons we learned and to share both our successes and challenges working with the weather forecasting community in designing, refining, and promoting novel products. We foresee that our experience in the NUCAPS product development life cycle may be relevant to other communities who can then build on these strategies to transition their products from research to operations (and operations back to research) within the satellite meteorological community.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-15
    Description: Cold Air Aloft (CAA) can impact commercial flights when cold air descends below 12,192 m (40,000 ft) and temperatures drop dramatically. A CAA event is identified when air temperature falls below −65 °C, which decreases fuel efficiency and poses a safety hazard. This manuscript assesses the performance of the National Oceanic and Atmospheric Administration Unique Combined Atmospheric Processing System (NUCAPS) in detecting CAA events using sounders on polar-orbiting satellites. We compare NUCAPS air temperature profiles with those from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) for January–March 2018. Of 1311 collocated profiles, 236 detected CAA. Our results showed that NUCAPS correctly detects CAA in 48.1% of profiles, while 17.2% are false positives and 34.7% are false negatives. To identify the reason for these detection states, we used a logistic regression trained on NUCAPS diagnostic parameters. We found that cloud cover can impact the skill even at higher vertical levels. This work indicates that a CAA-specific quality flag is feasible and may be useful to help forecasters to diagnose NUCAPS in real-time. Furthermore, the inclusion of an additional sounder data source (e.g., NOAA-20) may increase CAA forecast accuracy. Cloud scenes change rapidly, so additional observations provide more opportunities for correct detection.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-10
    Description: No abstract available
    Keywords: Geosciences (General)
    Type: MSFC-E-DAA-TN73812 , 2019 Joint Satellite Conference; Sep 28, 2019 - Oct 04, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-10-10
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN73616 , NASA Sounder Science Team Meeting; Sep 25, 2019 - Sep 27, 2019; Hyattsville, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Cloud movement and evolution signify the complex water and energy transport in the atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi coherent cluster objects enables study of their evolution which can complement climate model simulations and enhance satellite retrieval algorithms, where there are large gaps between overpasses. Using an area-overlap cluster tracking algorithm, in this study we examine the trajectories, horizontal extent, and brightness temperature variations of millions of individual cloud clusters over their lifespan, from infrared satellite observations at 30-minute, 4-km resolution, for a period of 11 years. We found that the majority of cold clouds were both small and short-lived and that their frequency and location are influenced by El Nino. More importantly, this large sample of individually tracked clouds shows their horizontal size and temperature evolution. Longer lived clusters tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lived clusters. On average, clusters with this lag also exhibited a greater rainfall contribution than those where minimum temperature and maximum size stages occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster development over Africa and the Indian subcontinent, we observed differences in the local timing of the maximum occurrence at different life cycle stages. Over land there was a strong diurnal peak in the afternoon while over the ocean there was a semi-diurnal peak composed of longer-lived clusters in the early morning hours and shorter-lived clusters in the afternoon. Building on regional specific work, this study provides a long-term, high-resolution, and global survey of object-based cloud characteristics.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology; Numerical Analysis
    Type: GSFC-E-DAA-TN36429 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 121; 19; 11,723-11,738
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-23
    Description: No abstract available
    Keywords: Geosciences (General)
    Type: MSFC-E-DAA-TN76715 , AMS Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-08-06
    Description: A new book presents an example-driven collection of basic methods, applications, and visualizations to process satellite data sets for Earth science research.
    Print ISSN: 0096-3941
    Electronic ISSN: 2324-9250
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...