ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019-07-12
    Description: An investigation was conducted at the NACA Lewis laboratory to determine whether simulated porous gas-turbine blades fabricated by the Eaton Manufacturing Company of Cleveland, Ohio would be satisfactory with respect to coolant flow for application in gas-turbine engines. These blades simulated porous turbine blades by forcing the cooling air onto the blade surface through a large number of chordwise openings or slits between laminations of sheet metal or wire. This type of surface has a finite number of openings, whereas a porous surface has an almost infinite number of smaller openings for the coolant flow. The investigation showed that a blade made of sheet-metal laminations stacked on a support member that passed up through the coolant passage was completely unsatisfactory because of extremely poor coolant flow distribution over the blade surface. The flow distribution for two wire-wound blades was more uniform, but the pressure drop between the coolant supply pressure and the local pressure on the outside of the blades was too low by a factor ranging from 3 to 3.5 for the required coolant flow rates. The pressure drop could be increased by forcing the wires closer together during blade fabrication.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE51C13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...