ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2014-10-08
    Description: The Greater Caucasus Mountains, due to their youth (~5 Ma), provide an opportunity for insight into the early stages of orogen development during continent-continent collision. However, their recent tectonic evolution and first-order architecture remain unclear. Here we investigate the evolution of the orogen by integrating new observations of the fluvial geomorphology and neotectonics of the range with prior work on seismicity, geodetic strain, bedrock geology and foreland-basin structure. We find that the range contains four zones along strike that differ in structural architecture, topography, and first-order tectonic history. In particular, two south-directed, singly-vergent zones at the western and eastern tips of the orogen are separated by both a central doubly-vergent zone that is dominated by north-directed deformation, and an eastern doubly-vergent zone in which south-directed thrusting dominates. We hypothesize that the along-strike changes in vergence and locus of deformation reflects different stages in the development of a doubly-vergent orogen, with the tips of the range preserving an early, singly-vergent form and the center recording a more advanced orogen. The differences between the two-doubly vergent zones seem to be driven by the initial stages of collision between the structurally thickened crust of the Greater and Lesser Caucasus orogens, which initiated at ~5 Ma.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-03
    Description: Comparison of plate convergence with the timing and magnitude of upper-crustal shortening in collisional orogens indicates both shortening deficits (200-1700 km) and significant (10-40%) plate deceleration during collision, the cause(s) for which remain debated. The Greater Caucasus Mountains, which result from post-collisional Cenozoic closure of a relict Mesozoic back-arc basin on the northern margin of the Arabia-Eurasia collision zone, help reconcile these debates. Here we use U-Pb detrital zircon provenance data and the regional geology of the Caucasus to investigate the width of the now-consumed Mesozoic back-arc basin and its closure history. The provenance data record distinct southern and northern provenance domains that persisted until at least the Miocene. Maximum basin width was likely ~350-400 km. We propose that closure of the back-arc basin initiated at ~35 Ma, coincident with initial (soft) Arabia-Eurasia collision along the Bitlis-Zagros suture, eventually leading to ~5 Ma (hard) collision between the Lesser Caucasus arc and the Scythian platform to form the Greater Caucasus Mountains. Final basin closure triggered deceleration of plate convergence and tectonic reorganization throughout the collision. Post-collisional subduction of such small (10 2 -10 3  km wide) relict ocean basins can account for both shortening deficits and delays in plate deceleration by accommodating convergence via subduction/underthrusting, although such shortening is easily missed if it occurs along structures hidden within flysch/slate belts. Relict-basin closure is likely typical in continental collisions in which the colliding margins are either irregularly shaped or rimmed by extensive back-arc basins and fringing arcs, such as those in the modern South Pacific.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-29
    Description: [1]  The Greater Caucasus are the northern most extent of the Arabia-Eurasia collision and are thought to represent the main locus of shortening within the central portion of the collision zone between 40º and 48ºE. Recent work suggests that in detail, since the Plio-Pleistocene, much of the shortening in the eastern portion of the Caucasus system has been focused within the Kura Fold-Thrust belt along the southeastern margin of the Greater Caucasus. Here we present new field mapping and stratigraphic investigations of the eastern termination of the Kura fold-thrust belt in Azerbaijan to better constrain the structural geometries, magnitude of shortening, and initiation age for this portion of the fold-thrust belt. Our work suggests that this area of the fold-thrust belt exhibits significant along-strike variations in structural style and evolution, and can effectively be divided into two distinct domains at ~48ºE. The western domain is characterized by a subcritical median surface slope and isolated folds and thrusts propagating out of sequence, whereas the eastern domain is dominated by a single duplex structure and a history of in-sequence development in a critically tapered wedge. We hypothesize that these variations result from changes in relative rates of syn-tectonic sedimentation, erosion, and convergence velocity along-strike. We find that within the western domain, the fold-thrust belt has accommodated ~12 km of total shortening. An unconformity within the western domain brackets the initiation age of this portion of the fold-thrust belt to between 1.8 and 0.88 Ma yielding permissible average shortening rates of between 6.7 and 13.6 mm/yr. Comparison of these average shortening rates to the geodetically measured shortening rate of 8 mm/yr indicate that since initiation, the fold-thrust belt has accommodated 83–100% of convergence between the Greater and Lesser Caucasus at this longitude.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-22
    Description: Key Points The Greater Caucasus Basin encompassed a broader region than envisioned by Vincent et al., who disregard Cenozoic shortening. Terminal basin closure occurred when the Greater and Lesser Caucasus collided. Data cited by Vincent et al. document the onset of basin closure by 35 Ma, but do not indicate terminal basin closure at this time.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...