ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Transfer of the broad host range conjugative plasmids pAM β 1, pIP501 and its derivative pIL205 into Lactobacillus sake was studied. Frequencies up to 5 × 10−6 transconjugants per recipient cell were found from Lactococcus lactis strain IL1403 to various strains of L. sake. The transfer takes place by a conjugation-like process on solid surface agar. Intrageneric transfer between L. sake strains was also observed, although at lower frequencies (10−7 transconjugants per recipient cell). The ability to transfer these plasmids into L. sake strains which are either refractory to transformation or poorly transformable provides a method of genetic transfer, thus opening the way for cloning strategies developed in other Gram-positive bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 562 (1989), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Gene 87 (1990), S. 53-61 
    ISSN: 0378-1119
    Keywords: Gram^+ bacteria ; Recombinant DNA ; Tn5 excision ; plasmids ; rolling-circle replication ; single-stranded DNA
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Bacillus subtilis contains three chromosomally encoded type I signal peptidases (SipS, SipT and SipU), which remove signal peptides from secretory precursor proteins. In the present study the biological function of SipS and the regulation of its synthesis were analysed. Unlike the type I signal peptidase of Escherichia coli, SipS was essential neither for protein secretion nor viability of the cell. However, in the absence of SipS the rate of processing of several preproteins was reduced, and four of the seven major secreted proteins of B. subtilis were hardly detectable in the growth medium. Surprisingly, the processing of Bacillus amyloliquefaciensα-amylase and the secretion of at least two endogenous B. subtilis proteins was improved in the absence of SipS. These findings indicate that the substrate preference of SipS differs from that of SipT and SipU, and that SipS is an important factor determining the efficiency of protein secretion in B. subtilis. SipS is transcribed in a growth phase- and medium-dependent manner. In minimal medium, the growth phase-dependent transcription of sipS is controlled by the DegS–DegU two-component regulatory system, indicating that the expression of sipS is regulated by the same factors that control the expression of most genes for secreted degradative enzymes. Our observations suggest that B. subtilis can modulate its capacity and specificity for protein secretion through the controlled expression of sipS.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 19 (1996), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: To test the effects of theta-type replication on homologous DNA recombination, we integrated in the chromosome of Bacillus subtilis a structure comprising a conditional replication region and direct repeats of ∼ 4 kb. The replicon was derived from a broad-host-range plasmid, pAMβ1, which replicates by a unidirectional theta mechanism and is thermosensitive. The direct repeats were derived from plasmid pBR322 and flanked the chloramphenicol-resistance gene of plasmid pC194. Recombination between the repeats could therefore lead to a loss of the resistance gene or the appearance of additional repeats. The integrated replicon was active at the permissive temperature, and ∼ 25% of the integrated plasmids could be isolated as Y-shaped molecules after restriction, having a branch at the replication origin. Replicon activity stimulated recombination four- to fivefold, as estimated from the proportion of chloramphenicol-sensitive cells at the restrictive and permissive temperature, and also led to the appearance of additional direct repeats. We conclude that theta-type replication stimulates homologous recombination and suggest that many or even most recombination events between long homologous sequences present in a bacterial genome may be the consequence of DNA replication.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd, UK
    Molecular microbiology 29 (1998), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The expression of the trp operon of Lactococcus lactis is regulated in response to tryptophan availability by a mechanism of transcription antitermination. We present evidence in support of a previously described model involving tRNATrp as a key element in the sensing of tryptophan levels and the realization of the regulatory response to tryptophan limitation. In agreement with this model, two sites of presumed direct interaction between the trp leader transcript and tRNATrp are found to be of crucial importance for efficient antitermination. These correspond to the specifier codon, which presumably interacts with the anticodon in the tRNA, and a sequence complementary to, and presumably interacting with, the acceptor stem of the tRNA. Through these interactions, uncharged tRNATrp is believed to stabilize an antiterminator conformation of the trp leader transcript, thus allowing transcription and expression of the structural genes of the operon. For the first time, we present direct evidence that it is the ratio of uncharged to charged tRNA that is important for the regulation of antitermination, rather than the absolute amount of uncharged tRNA. In addition, our results indicate that the codon–anticodon interaction, although contributing largely to the efficiency of the regulatory response, is not strictly indispensable, which suggests the existence of additional interactions between mRNA and tRNA. Finally, we describe a possible additional level of regulation, superimposed and dependent on tRNA-mediated antitermination control, that is based on the processing of the trp leader transcript. Together with the regulation mechanisms described earlier for the Escherichia coli and Bacillus subtilis trp operons, this constitutes the third different mechanism of transcript elongation control found to be involved in the regulation of an operon of which the structural genes are highly conserved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The only DNA helicase essential for Escherichia coli viability is DnaB, the chromosome replication fork helicase. In contrast, in Bacillus subtilis, in addition to the DnaB counterpart called DnaC, we have found a second essential DNA helicase, called PcrA. It is 40% identical to the Rep and UvrD DNA helicases of E. coli and 61% identical to the PcrA helicase of Staphylococcus aureus. This gene is located at 55° on the chromosome and belongs to a putative operon together with a ligase gene (lig ) and two unknown genes named pcrB and yerH. As PcrA was essential for cell viability, conditional mutants were constructed. In such mutants, chromosomal DNA synthesis was slightly decreased upon PcrA depletion, and rolling-circle replication of the plasmid pT181 was inhibited. Analysis of the replication intermediates showed that leading-strand synthesis of pT181 was prevented upon PcrA depletion. To compare PcrA with Rep and UvrD directly, the protein was produced in rep and uvrD mutants of E. coli. PcrA suppressed the UV sensitivity defect of a uvrD mutant but not its mutator phenotype. Furthermore, it conferred a Rep− phenotype on E. coli. Altogether, these results show that PcrA is an helicase used for plasmid rolling-circle replication and suggest that it is also involved in UV repair.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd, UK
    Molecular microbiology 28 (1998), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The function of the Lactococcus lactis bacteriophage bIL66 middle time-expressed operon (M-operon), involved in sensitivity to the abortive infection mechanism AbiD1, was examined. Expression of the M-operon is detrimental to Escherichia coli cells, induces the SOS response and is lethal to recA and recBC E. coli mutants, which are both deficient in recombinational repair of chromosomal double-stranded breaks (DSBs). The use of an inducible expression system allowed us to demonstrate that the M-operon-encoded proteins generate a limited number of randomly distributed chromosomal DSBs that are substrates for ExoV-mediated DNA degradation. DSBs were also shown to occur upstream of the replication initiation point of unidirectionally theta-replicating plasmids. The characteristics of the DSBs lead us to propose that the endonucleolytic activity of the M-operon is not specific to DNA sequence, but rather to branched DNA structures. Genetic and physical analysis performed with different derivatives of the M-operon indicated that two orfs (orf2 and orf3) are needed for nucleolytic activity. The orf3 product has amino acid homology with the E. coli RuvC Holliday junction resolvase. By site-specific mutagenesis, we have shown that one of the amino acid residues constituting the active centre of RuvC enzyme (Glu-66) and conserved in ORF3 (Glu-67) is essential for the nucleolytic activity of the M-operon gene product(s). We therefore propose that orf2 and orf3 of the M-operon code for a structure-specific endonuclease (M-nuclease), which might be essential for phage multiplication.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 35 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Escherichia coli UvrD helicase (or helicase II) is known for its involvement in DNA repair. We report that UvrD is required for DNA replication of several different rolling-circle plasmids in E. coli, whereas its homologue, the Rep helicase, is not. Lack of UvrD helicase does not impair the first step of plasmid replication, nicking of the double-stranded origin by the plasmid initiator protein. However, replication proceeds no further without UvrD. Indeed, the nicked plasmid molecules accumulate to a high level in uvrD mutants. We conclude that UvrD is the replicative helicase of various rolling-circle plasmids. This is the first description of a direct implication of UvrD in DNA replication in vivo.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The mechanism of recombination of tandem repeats in the chromosome of Escherichia coli was investigated by genetic means. Tandem repeats 624 bp long were introduced into the lacZ gene of E. coli and the efficiency of deletion of one repeat was compared in different recombination mutants. No effects of the recA, recBC, recF, ruvA or ruvA recG mutations were detected. Hence, tandem repeat deletion appears to not proceed via the RecBCD or RecF homologous recombination pathways. A new mutant in which RecA-independent recombination is increased 15-fold was isolated. The mutation lies in the dnaE gene coding for the alpha subunit of polymerase III: it is a Gly to Asp change at codon 133. Another dnaE mutation, dnaE486, was tested and also shown to stimulate RecA-independent recombination. It is proposed that tandem-repeat recombination occurs by a replication slippage mechanism. RecA-independent recombination is also enhanced in a rep mutant, in which chromosomal replication is slowed down by the absence of the Rep helicase, suggesting that replication pausing may facilitate slippage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...