ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-08-16
    Description: Biochemistry DOI: 10.1021/acs.biochem.6b00562
    Print ISSN: 0006-2960
    Electronic ISSN: 1520-4995
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-17
    Description: Article It is unclear whether new antimalarial compounds may rapidly lose effectiveness in the field because of parasite resistance. Here, Corey et al. investigate the acquisition of drug resistance and the extent to which common resistance mechanisms decrease susceptibility to a diverse set of 50 antimalarial compounds. Nature Communications doi: 10.1038/ncomms11901 Authors: Victoria C. Corey, Amanda K. Lukens, Eva S. Istvan, Marcus C. S. Lee, Virginia Franco, Pamela Magistrado, Olivia Coburn-Flynn, Tomoyo Sakata-Kato, Olivia Fuchs, Nina F. Gnädig, Greg Goldgof, Maria Linares, Maria G. Gomez-Lorenzo, Cristina De Cózar, Maria Jose Lafuente-Monasterio, Sara Prats, Stephan Meister, Olga Tanaseichuk, Melanie Wree, Yingyao Zhou, Paul A. Willis, Francisco-Javier Gamo, Daniel E. Goldberg, David A. Fidock, Dyann F. Wirth, Elizabeth A. Winzeler
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-06-01
    Description: Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-12-02
    Description: Although frontal cortex is thought to be important in controlling behavior across long periods of time, most studies of this area concentrate on neuronal responses instantaneously relevant to the current task. In order to investigate the relationship of frontal activity to behavior over longer time periods, we trained rhesus monkeys on a difficult oculomotor task. Their performance fluctuated during the day, and the activity of prefrontal neurons, even measured while the monkeys waited for the targets to appear at the beginning of each set of trials, correlated with performance in a probabilistic rather than a determinist manner: neurons reflected past or predicted future performance, much more than they reflected current performance. We suggest that this activity is related to processes such as arousal or motivation that set the tone for behavior rather than controlling it on a millisecond basis, and could result from ascending pathways that utilize slow, second-messenger synaptic processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hasegawa, R P -- Blitz, A M -- Geller, N L -- Goldberg, M E -- New York, N.Y. -- Science. 2000 Dec 1;290(5497):1786-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20892-4435, USA. rh@lsr.nei.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11099421" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways/physiology ; Animals ; Behavior, Animal ; Cues ; Forecasting ; Learning ; Macaca mulatta ; Neurons/*physiology ; Neuropsychological Tests ; Prefrontal Cortex/*physiology ; Probability ; *Psychomotor Performance ; Second Messenger Systems
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-04-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldberg, Daniel E -- New York, N.Y. -- Science. 2002 Apr 19;296(5567):482-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine and Department of Molecular Microbiology, Washington University, St. Louis, MO 63130, USA. goldberg@borcim.wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964467" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimalarials/*pharmacology ; Databases, Nucleic Acid ; Down-Regulation ; Drug Evaluation, Preclinical ; Erythrocytes/parasitology ; Folic Acid/metabolism ; Folic Acid Antagonists/pharmacology ; Genes, Protozoan ; Genome, Protozoan ; Host-Parasite Interactions ; Humans ; Multienzyme Complexes/*genetics/*metabolism ; Plasmodium falciparum/*drug effects/enzymology/genetics ; Protein Biosynthesis ; Proteome ; Protozoan Proteins/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Protozoan/genetics/metabolism ; Tetrahydrofolate Dehydrogenase/*genetics/*metabolism ; Thymidylate Synthase/*genetics/*metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-02-05
    Description: During their intraerythrocytic development, malaria parasites export hundreds of proteins to remodel their host cell. Nutrient acquisition, cytoadherence and antigenic variation are among the key virulence functions effected by this erythrocyte takeover. Proteins destined for export are synthesized in the endoplasmic reticulum (ER) and cleaved at a conserved (PEXEL) motif, which allows translocation into the host cell via an ATP-driven translocon called the PTEX complex. We report that plasmepsin V, an ER aspartic protease with distant homology to the mammalian processing enzyme BACE, recognizes the PEXEL motif and cleaves it at the correct site. This enzyme is essential for parasite viability and ER residence is essential for its function. We propose that plasmepsin V is the PEXEL protease and is an attractive enzyme for antimalarial drug development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826791/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826791/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russo, Ilaria -- Babbitt, Shalon -- Muralidharan, Vasant -- Butler, Tamira -- Oksman, Anna -- Goldberg, Daniel E -- AI-047798/AI/NIAID NIH HHS/ -- R01 AI047798/AI/NIAID NIH HHS/ -- R01 AI047798-10/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Feb 4;463(7281):632-6. doi: 10.1038/nature08726.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Washington University School of Medicine, Department of Molecular Microbiology, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20130644" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Antimalarials/pharmacology ; Aspartic Acid Endopeptidases/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Biocatalysis/drug effects ; Endoplasmic Reticulum/enzymology/metabolism ; Erythrocytes/cytology/*metabolism/parasitology ; Genes, Dominant ; Genes, Essential ; HIV Protease Inhibitors/pharmacology ; Humans ; Malaria, Falciparum/*blood/metabolism/*parasitology/pathology ; Multiprotein Complexes/metabolism ; Pepstatins/pharmacology ; Phenotype ; Plasmids/genetics ; Plasmodium falciparum/enzymology/genetics/*metabolism/pathogenicity ; Protein Binding ; Protein Sorting Signals ; Protein Structure, Tertiary ; Protein Transport ; Proteomics ; Protozoan Proteins/chemistry/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldberg, M E -- New York, N.Y. -- Science. 1989 Nov 3;246(4930):681-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17833424" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1992-12-18
    Description: The parasitic nematode Ascaris infests a billion people worldwide. Much of its proliferative success is due to prodigious egg production, up to 10(6) sterol-replete eggs per day. Sterol synthesis requires molecular oxygen for squalene epoxidation, yet oxygen is scarce in the intestinal folds the worms inhabit. Ascaris has an oxygen-avid hemoglobin in the perienteric fluid that bathes its reproductive organs. Purified hemoglobin contained tightly bound squalene and functioned as an NADPH-dependent, ferrihemoprotein reductase. All components of the squalene epoxidation reaction--squalene, oxygen, NADPH, and NADPH-dependent reductase--are assembled on the hemoglobin. This molecule may thus function in sterol biosynthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sherman, D R -- Guinn, B -- Perdok, M M -- Goldberg, D E -- AM-20579/AM/NIADDK NIH HHS/ -- RR-00954/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1992 Dec 18;258(5090):1930-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Washington University School of Medicine, St. Louis, MO.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1470914" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ascaris/*metabolism ; Hemoglobins/*metabolism ; Kinetics ; Mass Spectrometry ; NADPH-Ferrihemoprotein Reductase/metabolism ; Oxyhemoglobins/*metabolism ; Squalene/metabolism ; Sterols/*biosynthesis/isolation & purification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1992-01-03
    Description: Every eye movement produces a shift in the visual image on the retina. The receptive field, or retinal response area, of an individual visual neuron moves with the eyes so that after an eye movement it covers a new portion of visual space. For some parietal neurons, the location of the receptive field is shown to shift transiently before an eye movement. In addition, nearly all parietal neurons respond when an eye movement brings the site of a previously flashed stimulus into the receptive field. Parietal cortex both anticipates the retinal consequences of eye movements and updates the retinal coordinates of remembered stimuli to generate a continuously accurate representation of visual space.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duhamel, J R -- Colby, C L -- Goldberg, M E -- New York, N.Y. -- Science. 1992 Jan 3;255(5040):90-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1553535" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Eye Movements/*physiology ; Macaca mulatta ; Neurons/*physiology ; Parietal Lobe/*physiology ; Photic Stimulation ; Retina/*physiology ; Saccades ; Space Perception/*physiology ; Time Factors ; Visual Fields
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-10-23
    Description: Identifying traits that affect rates of speciation and extinction and, hence, explain differences in species diversity among clades is a major goal of evolutionary biology. Detecting such traits is especially difficult when they undergo frequent transitions between states. Self-incompatibility, the ability of hermaphrodites to enforce outcrossing, is frequently lost in flowering plants, enabling self-fertilization. We show, however, that in the nightshade plant family (Solanaceae), species with functional self-incompatibility diversify at a significantly higher rate than those without it. The apparent short-term advantages of potentially self-fertilizing individuals are therefore offset by strong species selection, which favors obligate outcrossing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldberg, Emma E -- Kohn, Joshua R -- Lande, Russell -- Robertson, Kelly A -- Smith, Stephen A -- Igic, Boris -- New York, N.Y. -- Science. 2010 Oct 22;330(6003):493-5. doi: 10.1126/science.1194513.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Illinois at Chicago, 840 West Taylor Street, M/C 067, Chicago, IL 60607, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20966249" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Evolution ; Fertilization/*physiology ; *Genetic Speciation ; Genetic Variation ; Inbreeding ; Phylogeny ; *Selection, Genetic ; Solanaceae/classification/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...