ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-05-08
    Description: The fault frequencies are as they are and cannot be improved. One can only improve its estimation quality. This paper proposes a fault diagnosis method by combining local mean decomposition (LMD) and the ratio correction method to process the short-time signals. Firstly, the vibration signal of rolling bearing is decomposed into a series of product functions (PFs) by LMD. The PF, which contains the richest fault information, is selected to perform envelope spectrum analysis by the Hilbert transform (HT). Secondly, the Hilbert envelope spectrum of the selected PF is corrected with the ratio correction method. Finally, higher precision fault frequencies are extracted from the corrected Hilbert envelope spectrum, and then the fault location is accurately determined. The proposed method of this paper can be used in online real-time monitoring technology of rolling bearing failure.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-15
    Description: The THz atmospheric limb sounder (TALIS) is a microwave radiometer developed by the National Space Science Center of the Chinese Academy of Sciences for the detection of atmospheric trace gases. The observation range of the instrument mainly focuses on the middle and upper atmosphere (10–100 km above the earth’s surface). The detection targets include the temperature, pressure, and more than 10 kinds of atmospheric components. Its scientific goal is to improve our comprehension of atmospheric chemical composition and dynamics, and to monitor environmental pollution and sources in the atmosphere. The TALIS instrument is composed of an antenna, superheterodyne radiometers, and digital fast Fourier transform (FFT) spectrometers. By measuring the atmospheric thermal radiance in the wide frequency band with 118, 190, 240, and 643 GHz as the center frequency, the required volume mixing ratio (VMR) of atmospheric chemical species can be obtained. This paper introduces the characteristics of the TALIS instrument, and establishes a simulation model for the TALIS spectrometer. Through a joint simulation with an atmosphere radiative transfer simulator (ARTS), the TALIS instrument performance is evaluated from the aspects of calibration, the imbalance of two sidebands, the spectrum resolution, and quantization. The simulation results show that the two-point calibration can well-restore the radiance spectrum of the scene target and remove the influence of the spectral response function (SRF); the double side band (DSB) receiver with a 2 MHz resolution can meet the sensitivity and spectrum resolution requirements. Finally, the sensitivity errors of different quantization bits are given by the simulation and the results show that at 8-bit, the sensitivity and its degradation ratio are 1.251 K and 1.036 at a 2 MHz spectrum resolution and 100 ms integration time, respectively.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-01-06
    Description: THz Atmospheric Limb Sounder (TALIS) is a microwave limb sounder being developed for atmospheric vertically resolved profile observations by the National Space Science Center, Chinese Academy of Sciences (NSSC, CAS). It is designed to measure temperature and chemical species such as O3, HCl, ClO, N2O, NO, NO2, HOCl, H2O, HNO3, HCN, CO, SO2, BrO, HO2, H2CO, CH3Cl, CH3OH, and CH3CN with a high vertical resolution from about 10 to 100 km to improve our comprehension of atmospheric chemistry and dynamics and to monitor the man-made pollution in the atmosphere. Four heterodyne radiometers including several FFT spectrometers of 2 GHz bandwidth with 2 MHz resolution are employed to obtain the atmospheric thermal emission in broad spectral regions centred near 118, 190, 240, and 643 GHz. A theoretical simulation is performed to estimate the retrieval precision of the main targets and to compare them with that of Aura MLS standard spectrometers. Single scan measurement and averaged measurement are considered in the simulation, respectively. The temperature profile can be obtained with a precision of
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-02
    Description: The THz Atmospheric Limb Sounder (TALIS) is a Chinese sub-millimeter limb sounder being designed by National Space Science Center of the Chinese Academy of Sciences to measure the temperature and chemical constituents vertically in the middle and upper atmosphere, with good precision and vertical resolution. This paper presents a simulation study that assesses the measurement errors and their impacts on the retrievals. Three error sources, including instrument uncertainties, calibration errors and a priori errors, are considered. The sideband weight uncertainty, the local oscillator, the pointing angle offsets and the measurement noise (NEDT), are considered as instrument uncertainties. Calibration errors consist of the hot target offset, the nonlinearity residual of the two-point calibration, use of the Rayleigh–Jeans (R–J) approximation and the choice of the antenna pattern. A priori profile errors of temperature, pressure and species are also considered. The results suggest that the antenna pattern mainly affects the retrievals in the troposphere. The NEDT is a major error source affecting all of the retrievals. The R–J approximation has a great impact upon the retrievals at 643 GHz, and should not be used. The local oscillator offset leads to an obvious error above 50 km. The effect of nonlinearity residuals cannot be neglected above 70 km. The impact of the sideband weight uncertainty and the hot target offset are relatively small. The pointing and the a priori errors can be neglected in most observation regions.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: THz Atmospheric Limb Sounder (TALIS) is a microwave limb sounder being developed for atmospheric high precision observation by the National Space Science Center, Chinese Academy of Sciences (NSSC, CAS). It is designed to measure the temperature and chemical species such as O3, HCl, ClO, N2O, NO, NO2, HOCl, H2O, HNO3, HCN, CO, SO2, BrO, HO2, H2CO, CH3Cl, CH3OH, and CH3CN with high vertical resolution from surface to about 100 km to improve our comprehension of atmospheric chemistry and dynamics, and to monitor the man-made pollution in the atmosphere. Four heterodyne radiometers including several FFT spectrometers of 2 GHz bandwidth with 2 MHz resolution are employed to obtain the atmospheric thermal emission in broad spectral regions centred near 118, 190, 240, and 643 GHz. A theoretical simulation is performed to estimate the retrieval precision of the main targets. Single scan measurement and averaged measurement are considered in simulation, respectively. Temperature profile can be obtained with the precision of
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...