ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: The new NRLMSISE-00 model and the associated NRLMSIS database now include the following data: (1) total mass density from satellite accelerometers and from orbit determination, including the Jacchia and Barlier data; (2) temperature from incoherent scatter radar, and; (3) molecular oxygen number density, [O2], from solar ultraviolet occultation aboard the Solar Maximum Mission (SMM). A new component, 'anomalous oxygen,' allows for appreciable O(+) and hot atomic oxygen contributions to the total mass density at high altitudes and applies primarily to drag estimation above 500 km. Extensive tables compare our entire database to the NRLMSISE-00, MSISE-90, and Jacchia-70 models for different altitude bands and levels of geomagnetic activity. We also investigate scientific issues related to the new data sets in the NRLMSIS database. Especially noteworthy is the solar activity dependence of the Jacchia data, with which we investigate a large O(+) contribution to the total mass density under the combination of summer, low solar activity, high latitudes, and high altitudes. Under these conditions, except at very low solar activity, the Jacchia data and the Jacchia-70 model indeed show a significantly higher total mass density than does MSISE-90. However, under the corresponding winter conditions, the MSIS-class models represent a noticeable improvement relative to Jacchia-70 over a wide range of F(sub 10.7). Considering the two regimes together, NRLMSISE-00 achieves an improvement over both MSISE-90 and Jacchia-70 by incorporating advantages of each.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: In our Numerical Spectral Model (NSM), which incorporates Hines' Doppler Spread Parameterization, gravity waves (GW) propagating in the east/west direction can generate the essential features of the observed equatorial oscillations in the zonal circulation and in particular the QBO (quasi-biennial oscillation) extending from the stratosphere into the upper mesosphere. We report here that the NSM also produces inter-seasonal variations in the zonally symmetric (m = 0) meridional circulation. A distinct but variable meridional wind oscillation (MWO) is generated, which appears to be the counterpart to the QBO. With a vertical grid-point resolution of about 0.5 km, the NSM produces the MWO through momentum deposition of GWs propagating in the north/south direction. The resulting momentum source represents a third (generally odd) order non-linear function of the meridional winds, and this enables the oscillation, as in the case of the QBO for the zonal winds. Since the meridional winds are relatively small compared to the zonal winds, however, the vertical wavelength that maintains the MWO is much smaller, i.e., only about 10 km instead of 40 km for the QBO. Consistent with the associated increase of the viscous stress, the period of the MWO is then short compared with that of the QBO, i.e., only about two to four months. Depending on the strength of the GW forcing, the computed amplitudes of the MWO are typically 4 m/s in the upper stratosphere and mesosphere, and the associated temperature amplitudes are between about 2 and 3 K. These amplitudes may be observable with the instruments on the TIMED spacecraft. Extended computer simulations with the NSM in 2D (two-dimensional) and 3D (three-dimensional) reveal that the MWO is modulated by and in turn influences the QBO.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: Solar cycle activity effects (SCAE) in the lower and middle atmosphere, reported in several studies, are difficult to explain on the basis of the small changes in solar radiation that accompany the 11-year cycle, It is therefore natural to speculate that dynamical processes may come into play to produce a leverage. Such a leverage may be provided by the Quasi-Biennial Oscillation (QBO) in the zonal circulation of the stratosphere, which has been linked to solar activity variations. Driven primarily by wave mean flow interaction, the QBO period and its amplitude are variable but are also strongly influenced by the seasonal cycle in the solar radiation. This influence extends to low altitudes referred to as "downward control". Relatively small changes in solar radiative forcing can produce small changes in the period and phase of the QBO, but this in turn can produce measurable differences in the wind field. Thus, the QBO may be an amplifier of solar activity variations and a natural conduit of these variations to lower altitudes. To test this hypothesis, we conducted experiments with a 2D (two-dimensional) version of our Numerical Spectral Model that incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Solar cycle radiance variations (SCRV) are accounted for by changing the radiative heating rate on a logarithmic scale from 0.1 % at the surface to 1 % at 50 km to 10% at 100 km. With and without SCRV, but with the same GW flux, we then conduct numerical experiments to evaluate the magnitude of the SCAE in the zonal circulation. The numerical results indicate that, under certain conditions, the SCAE is significant and can extend to lower altitudes where the SCRV is inconsequential. At 20-km the differences in the modeled wind velocities are as large as 5 m/s. For a modeled QBO period of 30 months, we find that the seasonal cycle in the solar forcing (through the Semi-annual Oscillation (SAO)) acts as a strong pacemaker to lockup the phase and period of the QBO. The SCAE then shows up primarily as a distinct but relatively weak amplitude modulation. But with the QBO period between 30 and 34 (or less than 30, presumably) months, the seasonal phase lock is weak. Solar flux radiance variations in the seasonal cycle then cause variations in the QBO period and phase that amplify the SCAE to produce relatively large variations in the wind field. These variations also extend to mid latitudes.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: Quasi-decadal oscillations (QDO) have been observed in the stratosphere and have been linked to the equatorial Quasi-Biennial Oscillation (QBO) and to the 11-year solar activity cycle. With the use of a 2D version of our Numerical Spectral Model (NSM) that incorporates Hines' Doppler Spread Parameterization (DSP) for gravity waves (GW), we demonstrate that beat periods between 9 and 11 years can be generated by the QBO as it interacts through GW filtering with the Annual Oscillation (AO) and Semi-annual Oscillation (SAO). Results are discussed from computations covering up to 50 years, and our analyses leads to the following conclusions. The QDO as a stand-alone signature is largely confined to the upper mesosphere. Its largest signature appears in the form of amplitude modulations of the QBO, AO and SAO, and these extend into the lower stratosphere. The downward control that characterizes the QBO apparently comes into play, and the longer time constants for diffusion and radiative loss at lower altitudes facilitate the QDO response. Although excited by the QBO, which is confined to low latitudes, the QDO is shown to extend to high latitudes. The effect is particularly large for the QBO with period around 33.5 month (near the upper limit of observations), which interacts with the SAO to produce a hemispherically symmetric QDO. Our analysis indicates that the QDO is transferred to high latitudes by the meridional circulation, which prominently exhibits this periodicity particularly in the amplitude modulation of the AO.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: Quasi-decadal oscillations (QDO) have been observed in the stratosphere and have been linked to the equatorial Quasi-Biennial Oscillation (QBO) and to the 11-year solar activity cycle. With the use of a 2D version of our Numerical Spectral Model (NSM) that incorporates Hines'Doppler Spread Parameterization (DSP) for gravity waves (GW), we demonstrate that beat periods between 9 and I I years can be generated by the QBO as it interacts through GW filtering with the Annual Oscillation (AO) and Semi-annual Oscillation (SAO). Results are discussed from computations covering up to 50 years, and our analyses leads to the following conclusions. The QDO as a stand-alone signature is largely confined to the upper mesosphere. Its largest signature appears in the form of amplitude modulations of the QBO, AO and SAO, and these extend into the lower stratosphere. The downward control that characterizes the QBO apparently comes into play, and the longer time constants for diffusion and radiative loss at lower altitudes facilitate the QDO response. Although excited by the QBO, which is confined to low latitudes, the QDO is shown to extend to high latitudes. The effect is particularly large for the QBO with period around 33.5 month (near the upper limit of observations), which interacts with the SAO to produce a hemispherically symmetric QDO. Our analysis indicates that the QDO is transferred to high latitudes by the meridional circulation, which prominently exhibits this periodicity particularly in the amplitude modulation of the AO. The propensity for beat periods around 10 years may help to increase significantly the efficiency for generating solar cycle signatures in the atmosphere, and we discuss numerical experiments related to that.
    Keywords: Environment Pollution
    Type: 2001 Fall AGU Meeting; 10-14 Dec. 2001; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Applying Hines Doppler Spread Parameterization for gravity waves (GW), our 3D model reproduces some essential features that characterize the observed seasonal variations of tides and planetary waves in the upper mesosphere. In 2D, our model also reproduces the large Semi-Annual Oscillation (SAO) and Quasi Biennial Oscillation (QBO) observed in this region at low latitudes. It is more challenging to describe these features combined in a more comprehensive self consistent model, and we give a progress report that outlines the difficulties and reports some success. In 3D, the GW's are partially absorbed by tides and planetary waves to amplify them. Thus the waves are less efficient in generating the QBO and SAO at equatorial latitudes. Some of this deficiency is compensated by the fact that the GW activity is observed to be enhanced at low latitudes. Increasing the GW source has the desired effect to boost the QBO, but the effect is confined primarily to the stratosphere. With increasing altitude, the meridional circulation becomes more important in redistributing the momentum deposited in the background flow by the GW's. Another factor involved is the altitude at which the GW's originate, which we had originally chosen to be the surface. Numerical experiments show that moving this source altitude to the top of the troposphere significantly increases the efficiency for generating the QBO without affecting much the tides and planetary waves in the model. Attention to the details in which the GW source comes into play thus appears to be of critical importance in modeling the phenomenology of the MLT. Among the suite of numerical experiments reported, we present a simulation that produced significant variations of tides and planetary waves in the upper mesosphere. The effect is related to the QBO generated in the model, and GW filtering is the likely cause.
    Keywords: Environment Pollution
    Type: 2001 Fall AGU Meeting; 10-14 Dec. 2001; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: Our Numerical Spectral Model (NSM) extends from the ground up into the thermosphere and has a vertical grid point resolution of about 0.5 km to resolve the interactions of gravity waves (GWs) described with Hines' Doppler Spread Parameterization (DSP). This model produces in the stratosphere and mesosphere the major features of QBO, SAO, tides, and planetary waves. The purpose of this paper is to discuss results from an initial study with our 3D model that shows how certain tropospheric processes can affect the dynamics of the middle atmosphere. Under the influence of tropospheric heating, and augmented by GW interactions, two distinct but related processes can be identified. (1) A meridional circulation develops in the stratosphere, with rising motions at low latitudes that are in magnitude comparable to the downward propagation of the QBO. As Dunkerton pointed out, a larger GW source is then required to reproduce the observed QBO, which tends to move us closer to the values recommended for the DSP. This has significant consequences for our model results that describe the upper mesosphere, considering the general importance of GWs for this region and in influencing planetary waves (e.g., 2-day wave) and tides in particular. (2) Tropospheric heating produces zonal jets near the tropopause that are related to latitudinal variations in pressure and reversing temperature variations (resembling the dynamical conditions near the mesopause), which in turn is conducive to generate baroclinic instability. Modeling results show that our ability to generate the QBO critically depends on the magnitude of the temperature reversal that is a measure of this instability. Planetary waves are generated in this process, which can apparently interfere with or augment the GW interactions. As originally demonstrated by Lindzen and Holton, the eastward propagating Kelvin waves and westward propagating Rossby gravity waves (generated by tropospheric convection) can in principle provide the acceleration to influence the QBO, and we were able to confirm this with our 3D model.
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union Fall Meeting; 6-10 Dec. 2002; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: In our Numerical Spectral Model (NSM), which incorporates Hines' Doppler Spread Parameterization, gravity waves (GW) propagating in the east/west direction can generate the essential features of the observed equatorial oscillations of the zonal circulation and in particular the QBO (quasi-biennial oscillation) extending from the stratosphere into the upper mesosphere. We report here that the NSM also produces inter-seasonal variations in the zonally symmetric meridional circulation. A distinct meridional oscillation (MO) is generated, which appears to be the counterpart to the QBO. With a vertical grid-point resolution of about 0.5 km, the NSM produces the MO through momentum deposition of GW's propagating in the north/south direction. This process is inherently non-linear, of third (odd) order, which enables the oscillation. Since the meridional winds are relatively small compared to the zonal winds, the vertical wavelength required to maintain the MO is also smaller, i.e., only about 10 km instead of the 30 km for the QBO. The corresponding viscous stress is then larger, and the period of the MO is thus short compared with that of the QBO, i.e., only about 3 to 4 months. Depending on the strength of the GW forcing, the computed amplitudes of the meridional wind oscillation are typically 5 m/s in the upper stratosphere and mesosphere, and the associated temperature amplitudes are between about 2 and 3 K. These amplitudes may be observable with the instruments on the TIMED spacecraft. Extended computer simulations with the NSM in 2D and 3D reveal that the MO at low latitudes is modulated by the QBO and in turn can influence it to produce a hemispherically asymmetric component. The annual circulation from the summer to the winter hemisphere is likely to play an important role.
    Keywords: Environment Pollution
    Type: 2002 Spring AGU; 28-31 May 2002; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: Solar cycle activity effects (SCAE) in the lower and middle atmosphere, reported in several studies, are difficult to explain on the basis of the small changes in solar radiation that accompany the 11-year cycle. It is therefore natural to speculate that dynamical processes may come into play to produce a leverage. Such a leverage may be provided by the Quasi-Biennial Oscillation (QBO) in the zonal circulation of the stratosphere, which has been linked to solar activity variations. Driven primarily by wave mean flow interaction, the QBO period and its amplitude are variable but are also strongly influenced by the seasonal cycle in the solar radiation. This influence extends to low altitudes and is referred to as 'downward control'. Small changes in the solar radiative forcing may produce small changes in the period and phase of the QBO, but these in turn may produce measurable differences in the wind field. Thus, the QBO may be an amplifier of solar activity variations and a natural conduit of these variations to lower altitudes. To test this hypothesis, we conducted experiments with a 2D version of our Numerical Spectral Model that incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Solar cycle radiance variations (SCRV) are accounted for by changing the radiative heating rate on a logarithmic scale from 0.1% at the surface to 1% at 50 km to 10% at 100 km. With and without SCRV, but with the same GW flux, we then conduct numerical experiments to evaluate the magnitude of the SCAE in the zonal circulation. The numerical results indicate that, under certain conditions, the SCAE is significant and can extend to lower altitudes where the SCRV is small. For a modeled QBO period of 30 months, we find that the seasonal cycle in the solar forcing acts as a strong pacemaker to lock up the phase and period of the QBO. The SCAE then shows up primarily as a distinct but relatively weak amplitude modulation. But with a different QBO period between 30 and 34 (or less than 30, presumably) months, the seasonal phase lock is weak. Solar flux variations in the seasonal cycle then cause variations in the QBO period and phase. These amplify the SCAE to produce relatively large variations in the wind field. The SCAE in this case extends to mid-latitudes.
    Keywords: Solar Physics
    Type: 2002 Spring AGU; 28-31 May 2002; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-10
    Description: We present a methodology for infrasonic remote sensing of winds in the stratosphere that does not require discrete ground-truth events. Our method uses measured time delays between arrays of sensors to provide group velocities (referred to here as celerities) and then minimizes the difference between observed and predicted celerities by perturbing an initial atmospheric specification. Because we focus on interarray propagation effects, it is not necessary to simulate the full propagation path from source to receiver. This feature allows us to use a relatively simple forward model that is applicable over short-regional distances. By focusing on stratospheric returns, we show that our non-linear inversion scheme converges much better if the starting model contains a strong stratospheric duct. Using the Horizontal Wind Model (HWM)/Mass Spectrometer Incoherent Scatter (MSISE) empirical climatology as a starting model, we demonstrate that the inversion scheme is robust to large uncertainties in backazimuth, but that uncertainties in the measured trace velocity and celerity require the use of prior constraints to ensure suitable convergence. The inversion of synthetic data, using realistic estimates of measurement error, shows that our scheme will nevertheless improve upon a starting model under most scenarios. The inversion scheme is applied to infrasound data recorded from a large event on 2010 December 25, which is presumed to be a bolide, using data from a nine-element infrasound network in Utah. We show that our recorded data require a stronger zonal wind speed in the stratosphere than is present in the HWM profile, and are more consistent with the Ground-to-Space (G2S) profile.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...