ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2021-08-21
    Description: The Satellite Laser Ranging (SLR) technique provides very accurate distance measurements to artificial Earth satellites. SLR is employed for the realization of the origin and the scale of the terrestrial reference frame. Despite the high precision, SLR observations can be affected by various systematic errors. So far, range biases were used to account for systematic measurement errors and mismodeling effects in SLR. Range biases are constant for all elevation angles and independent of the measured distance to a satellite. Recently, intensity-dependent biases for single-photon SLR detectors and offsets of barometer readings and meteorological devices were reported for some SLR stations. In this paper, we study the possibility of the direct estimation of tropospheric biases from SLR observations to LAGEOS satellites. We discuss the correlations between the station heights, range biases, tropospheric biases, and their impact on the repeatability of station coordinates, geocenter motion, and the global scale of the reference frame. We found that the solution with the estimation of tropospheric biases provides more stable station coordinates than the solution with the estimation of range biases. From the common estimation of range and tropospheric biases, we found that most of the systematic effects at SLR stations are better absorbed by elevation-dependent tropospheric biases than range biases which overestimate the total bias effect. The estimation of tropospheric biases changes the SLR-derived global scale by 0.3 mm and the geocenter coordinates by 1 mm for the Z component, causing thus an offset in the realization of the reference frame origin. Estimation of range biases introduces an offset in some SLR-derived low-degree spherical harmonics of the Earth’s gravity field. Therefore, considering elevation-dependent tropospheric and intensity biases is essential for deriving high-accuracy geodetic parameters.
    Print ISSN: 0949-7714
    Electronic ISSN: 1432-1394
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-30
    Description: Sentinel-3A/3B (S3A/B) satellites are equipped with a number of precise instruments dedicated to the measurement of surface topography, sea and land surface temperatures and ocean and land surface color. The high-precision orbit is guaranteed by three instruments: Global Positioning System (GPS) receiver, laser retroreflector dedicated to Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) antenna. In this article, we check the possibility of using SLR observations and GPS-based reduced-dynamic orbits of active S3A/B satellites for the determination of global geodetic parameters, such as geocenter motion, Earth rotation parameters (ERPs) and the realization of the terrestrial reference frame, based on data from 2016-2018. The calculation process was preceded with the estimation of SLR site range biases, different network constraining tests and a different number of orbital arcs in the analyzed solutions. The repeatability of SLR station coordinates based solely on SLR observations to S3A/B is at the level of 8-16 mm by means of interquartile ranges even without network constraining in 7-day solutions. The combined S3A/B and LAGEOS solutions show a consistency of estimated station coordinates better than 13 mm, geocenter coordinates with a RMS of 6 mm, pole coordinates with a RMS of 0.19 mas and Length-of-day with a RMS of 0.07 ms/day when referred to the IERS-14-C04 series. The altimetry observations have to be corrected by the geocenter motion to obtain unbiased estimates of the mean sea level rise. The geocenter motion is typically derived from SLR measurements to passive LAGEOS cannonball-like satellites. We found, however, that SLR observations to active Sentinel satellites are well suited for the determination of global geodetic parameters, such as Earth rotation parameters and geocenter motion, which even further increases the potential applications of Sentinel missions for deriving geophysical parameters.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-07-24
    Print ISSN: 0949-7714
    Electronic ISSN: 1432-1394
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...