ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford [u.a.] : International Union of Crystallography (IUCr)
    Acta crystallographica 54 (1998), S. 897-898 
    ISSN: 1600-5759
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006
    Keywords: TF IV ; Task Force IV ; Ultra-Deep Continental Crust Subduction (UDCCS)
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract  The unit-cell dimensions and crystal structure of sillimanite at various pressures up to 5.29 GPa have been refined from single-crystal X-ray diffraction data. As pressure increases, a and b decrease linearly, whereas c decreases nonlinearly with a slightly positive curvature. The axial compression ratios at room pressure are βa:βb:βc=1.22:1.63:1.00. Sillimanite exhibits the least compressibility along c, but the least thermal expansivity along a (Skinner et al. 1961; Winter and Ghose 1979). The bulk modulus of sillimanite is 171(1) GPa with K′=4 (3), larger than that of andalusite (151 GPa), but smaller than that of kyanite (193 GPa). The bulk moduli of the [Al1O6], [Al2O4], and [SiO4] polyhedra are 162(8), 269(33), and 367(89) GPa, respectively. Comparison of high-pressure data for Al2SiO5 polymorphs reveals that the [SiO4] tetrahedra are the most rigid units in all these polymorphic structures, whereas the [AlO6] octahedra are most compressible. Furthermore, [AlO6] octahedral compressibilities decrease from kyanite to sillimanite, to andalusite, the same order as their bulk moduli, suggesting that [AlO6] octahedra control the compression of the Al2SiO5 polymorphs. The compression of the [Al1O6] octahedron in sillimanite is anisotropic with the longest Al1-OD bond shortening by ∼1.9% between room pressure and 5.29 GPa and the shortest Al1-OB bond by only 0.3%. The compression anisotropy of sillimanite is primarily a consequence of its topological anisotropy, coupled with the compression anisotropy of the Al-O bonds within the [Al1O6] octahedron.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract  The topological properties of the electron density distributions for more than 20 hydroxyacid, geometry optimized molecules with SiO and GeO bonds with 3-, 4-, 6- and 8-coordinate Si and Ge cations were calculated. Electronegativities calculated with the bond critical point (bcp) properties of the distributions indicate, for a given coordination number, that the electronegativity of Ge (∼1.85) is slightly larger than that of Si (∼1.80) with the electronegativities of both atoms increasing with decreasing bond length. With an increase in the electron density, the curvatures and the Laplacian of the electron density at the critical point of each bond increase with decreasing bond length. The covalent character of the bonds are assessed, using bond critical point properties and electronegativity values calculated from the electron density distributions. A mapping of the (3, −3) critical points of the valence shell concentrations of the oxide anions for bridging SiOSi and GeOGe dimers reveals a location and disposition of localized nonbonding electron pairs that is consistent with the bridging angles observed for silicates and germanates. The bcp properties of electron density distributions of the SiO bonds calculated for representative molecular models of the coesite structure agree with average values obtained in X-ray diffraction studies of coesite and danburite to within ∼5%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract  The strength of a bond, defined as p=s/r, where s is the Pauling bond strength and r is the row number of an M cation bonded to an oxide anion, is related to a build-up of electron density along the MO bonds in a relatively large number of oxide and hydroxyacid molecules, three oxide minerals and three molecular crystals. As p increases, the value of the electron density is observed to increase at the bond critical points with the lengths of the bonds shortening and the electronegativities of the M cations bonded to the oxide anion increasing. The assertion that the covalency of a bond is intrinsically connected to its bond strength is supported by the electron density distribution and its bond critical point properties. A connection also exists between the properties of the electron density distributions and the connectivity of the bond strength network formed by the bonded atoms of a structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Molecular orbital calculations completed on fluoride molecules containing first and second row cations have generated bond lengths, R, that match those observed for coordinated polyhedra in crystals to within ∼0.04 Å, on average. The calculated bond lengths and those observed for fluoride crystals can be ranked with the expression R=Kp −0.22, where p=s/r, s is the Pauling strength of the bond, r is the row number of the cation and K=1.34. The exponent -0.22 (≈ -2/9) is the same as that observed for oxide, nitride and sulfide molecules and crystals. Bonded radii for the fluoride anion, obtained from theoretical electron density maps, increase linearly with bond length. Those calculated for the cations as well as for the fluoride anion match calculated promolecule radii to within ∼0.03 Å, on average, suggesting that the electron density distributions in the vicinity of the minima along the bond paths possess a significant atomic component despite bond type. Bonded radii for Si and O ions provided by experimental electron density maps measured for the oxides coesite, danburite and stishovite match those calculated for a series of monosilicic acid molecules. The resulting radii increase with bond length and coordination number with the radius of the oxide ion increasing at a faster rate than that of the Si cation. The oxide ion within danburite exhibits several distinct radii, ranging between 0.9 and 1.2 Å, rather than a single radius with each exhibiting a different radius along each of the nonequivalent bonds with B, Si and Ca. Promolecule radii calculated for the coordinated polyhedra in danburite match procrystal radii obtained in a structure analysis to within 0.002 Å. The close agreement between these two sets of radii and experimentally determined bonded radii lends credence to Slater's statement that the difference between the electron density distribution observed for a crystal and that calculated for a procrystal (IAM) model of the crystal “would be small and subtle, and very hard to determine by examination of the total charge density.”
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2021
    Keywords: Key words Witherite ; High pressure ; Aragonite ; Crystal structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Natural witherite (Ba0.99Sr0.01CO3) has been studied by single-crystal X-ray diffraction in the diamond anvil cell at eight pressures up to 8 GPa. At ambient pressure, cell dimensions are a = 5.3164(12) Å, b = 8.8921(19) Å, c = 6.4279(16) Å, and the structure was refined in space group Pmcn to R(F) = 0.020 from 2972 intensity data. The unit cell and atom position parameters for the orthorhombic cell were refined at pressures of 1.2, 2.0, 2.9, 3.9, 4.6, 5.5, 6.2, and 7.0 GPa. The volume-pressure data are used to calculate equation of state parameters K T0 = 50.4(12) GPa and K′ = 1.9(4). At approximately 7.2 GPa, a first-order transformation to space group P3¯1c was observed. Cell dimensions of the high-pressure phase at 7.2 GPa are a = 5.258(6) Å, c = 5.64(1) Å. The high pressure structure was determined and refined to R(F) = 0.06 using 83 intensity data, of which 15 were unique. This high-pressure phase appears to be more compressible than the orthorhombic phase with an estimated initial bulk modulus (K 7.2GPa) of 10 GPa.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Relative compressibilities of five silicate garnets were determined by single-crystal x-ray diffraction on crystals grouped in the same high-pressure mount. The specimens include a natural pyrope [(Mg2.84Fe0.10Ca0,06) Al2Si3O12], and four synthetic specimens with octahedrally-coordinated silicon: majorite [Mg3(MgSi)Si3O12], calcium-bearing majorite [(Ca0.49Mg2.51)(MgSi)Si3012], sodium majorite [(Na1.88Mgp0.12)(Mg0.06Si1.94)Si3O12], and an intermediate composition [(Na0.37Mg2.48)(Mg0.13Al1.07 Si080) Si3O12]. Small differences in the compressibilities of these crystals are revealed because they are subjected simultaneously to the same pressure. Bulk-moduli of the garnets range from 164.8 ± 2.3 GPa for calcium majorite to 191.5 ± 2.5 GPa for sodium majorite, assuming K′=4. Two factors, molar volume and octahedral cation valence, appear to control garnet compression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-11-22
    Description: The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand 〈150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN11260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Mars Science Laboratory Curiosity rover landed in Gale crater in August 2012 to study the layered sediments of lower Aeolis Mons (i.e., Mount Sharp), which have signatures of phyllosilicates, hydrated sulfates, and iron oxides in orbital visible/near-infrared observations. The observed mineralogy within the stratigraphy, from phyllosilicates in lower units to sulfates in higher units, suggests an evolution in the environments in which these secondary phases formed. Curiosity is currently investigating the sedimentary structures, geochemistry, and mineralogy of the Murray formation, the lowest exposed unit of Mount Sharp. The Murray formation is dominated by laminated lacustrine mudstone and is approx.200 m thick. Curiosity previously investigated lacustrine mudstone early in the mission at Yellowknife Bay, which represents the lowest studied stratigraphic unit. Here, we present the minerals identified in lacus-trine mudstone from Yellowknife Bay and the Murray formation. We discuss trends in mineralogy within the stratigraphy and the implications for ancient lacustrine environments, diagenesis, and sediment sources.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-38733 , Lunar and Planetary Science Conference; 20-24 Mar. 2017; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...