ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-01
    Description: The Summer East Atlantic (SEA) mode is the second dominant mode of summer low-frequency variability in the Euro-Atlantic region. Using reanalysis data, we show that SEA-related circulation anomalies significantly influence temperatures and precipitation over Europe. We present evidence that part of the interannual SEA variability is forced by diabatic heating anomalies of opposing signs in the tropical Pacific and Caribbean that induce an extratropical Rossby wave train. This precipitation dipole is related to SST anomalies characteristic of the developing ENSO phases. Seasonal hindcast experiments forced with observed sea surface temperatures (SST) exhibit skill at capturing the interannual SEA variability corroborating the proposed mechanism and highlighting the possibility for improved prediction of boreal summer variability. Our results indicate that tropical forcing of the SEA likely played a role in the dynamics of the 2015 European heat wave.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-19
    Description: Experiments using atmosphere-only, as well as coupled forecast models, in which parts of the model atmosphere are constrained towards reanalysis products by relaxation are described. Such experiments have proved useful for determining remote influences, e.g. from the tropics or from the stratosphere, potentially useful for seasonal forecasting boreal winter over Europe. Such techniques can also be used for diagnosing remote influences important in the dynamics of a particular season, a good example being the extreme winter of 1962/63. An example is also given for the boreal summer East Atlantic pattern in which relaxation experiments fail to capture the appropriate influence from the tropics. Possible reasons for this will be given.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-10
    Description: El Niño/Southern Oscillation has global teleconnections. Precipitation on the US East Coast, and in particular Southern California, is strongly dependent on ENSO variability in the tropical Pacific: More rainfall is expected during El Niño episodes, and reduced rainfall during La Niña. While this teleconnection is highly dependent on the location, timing, and strength of the sea surface temperature (SST) signal in the tropical Pacific, the associated nonlinearities are often not well represented in current climate models. Moreover, the location and strength of convection over the equatorial Pacific has been shown to be linked to the strength of atmospheric feedbacks in the tropical Pacific, i.e. the wind-SST feedback and the heat flux-SST feedback. The strength of the local atmospheric feedbacks is here shown to not only affecting tropical Pacific ENSO dynamics, but also the teleconnection to California: A strengthening of the atmospheric feedback tends to initiate a stronger wave train to California, bringing significantly higher rainfall. In addition to feedback strength, this study compares coupled and atmosphere-only models with observations in terms of the ENSO teleconnection to California.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  [Paper] In: AMS 91th Annual Meeting, 22.-27.01.2011, Seattle, WA, USA .
    Publication Date: 2017-05-23
    Description: The stratosphere and troposphere exhibit strong coupling during the active seasons of the stratosphere (winter/spring in the Northern/Southern Hemispheres), which are characterized by bursts of planetary-scale Rossby waves and by large stratospheric wind and temperature anomalies (major or minor warmings), which may be accompanied by tropospheric flow anomalies. We here explore further the role of planetary wave bursts in creating these anomalies and in stratosphere – troposphere coupling. This kind of variability is now well known to occur spontaneously in models of a wide range of complexity. This paper seeks to contribute to the understanding of such variability within a quasi-linear framework. This is done by employing a linear model to diagnose Rossby wave behavior in a general circulation model of intermediate complexity (a spectral core model) in cases in which the model exhibits such variability. Resonance theory is suggested to provide a means to understand stratosphere – troposphere coupling immediately prior to the onset of wave bursts and the accompanying stratospheric warmings and tropospheric anomalies.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-24
    Description: The recent discovery of large ionospheric disturbances associated with sudden stratospheric warmings (SSW) has challenged the current understanding of mechanisms coupling the stratosphere and ionosphere. Non-linear interaction of planetary waves and tides has been invoked as a primary mechanism for such coupling. Here we show that planetary waves may play a more complex role than previously thought. Planetary wave forcing induces a global circulation that leads to the build-up of ozone density in the tropics at 30–50 km altitude, the primary region responsible for the generation of the migrating semidiurnal tide. The increase in the ozone density reaches 25% and lasts for ∼35 days following the SSW, long after the collapse of the planetary waves. Ozone enhancements are not only associated with SSW but are also observed after other amplifications in planetary waves. In addition, the longitudinal distribution of the ozone becomes strongly asymmetric, potentially leading to the generation of non-migrating semidiurnal tides. We report a persistent increase in the variability of ionospheric total electron content that coincides with the increase in stratospheric ozone and we suggest that the ozone fluctuations affect the ionosphere through the modified tidal forcing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  (Doctoral thesis/PhD), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 192 pp
    Publication Date: 2017-05-23
    Description: The stratosphere and the troposphere exhibit a strong coupling during the winter months. However, the coupling mechanisms between the respective vertical layers are not fully understood. An idealized spectral core dynamical model is utilized in the present study in order to clarify the coupling timing, location and mechanisms. Since the coupling between the winter stratosphere and troposphere is strongly intensified during times of strong stratospheric variability such as stratospheric warmings, these events are simulated in the described model for the study of stratosphere - troposphere coupling, while for comparison the coupling is also assessed for weaker stratospheric variability. While the upward coupling by planetary-scale Rossby waves in the Northern Hemisphere is well understood, the Southern Hemisphere exhibits traveling wave patterns with a weaker impact on the stratospheric ow. However the tropospheric generation mechanism of these waves is not well understood and is investigated in this study. It is found that in the model atmosphere without a zonally asymmetric wave forcing, traveling waves are unable to induce a significant wave ux into the stratosphere. In the absence of synoptic eddy activity, however, the tropospheric ow is baroclinically unstable to planetary-scale waves, and the generated planetary waves are able to propagate into the stratosphere and induce sudden warmings comparable in frequency and strength to the Northern Hemisphere. While baroclinic instability of long waves may be further strengthened by the addition of moisture, the real atmosphere also exhibits strong synoptic eddy activity, and it will have to be further explored if the atmosphere exhibits periods where synoptic eddies are weak enough to allow for baroclinic instability of long waves. In order to further investigate the coupling between the stratosphere and the troposphere, cases of strong coupling are investigated in the analysis of a Northern Hemisphere - like winter atmosphere. A realistic frequency and strength of sudden warmings is obtained using a zonal wave-2 topographic forcing. An angular momentum budget analysis yields that the Eliassen-Palm (EP) flux is closely balanced by the residual circulation dominated by the Coriolis term on a daily basis, while the change in zonal wind is a small residual between these dominant terms. In the stratosphere, the EP flux term and the Coriolis term balance well in time but not exactly in magnitude, yielding a polar stratospheric weakening of the zonal mean wind as observed during stratospheric warmings. In the troposphere, the loss of angular momentum before a sudden warming induces a weak negative annular mode response, which is amplified by the downward propagating signal about three weeks after the sudden warming. The angular momentum budget does not reveal the mechanism of downward influence, but it nevertheless clarifies the momentum balance of the stratosphere - troposphere system, indicating that the effects of the waves and the residual circulation have to be considered at the same time. Since the annular mode response cannot be directly investigated using the angular momentum budget, the annular mode coupling between the stratosphere and the troposphere is further investigated using a statistical approach. The annular mode response is often framed in terms of Empirical Orthogonal Functions (EOFs), but it is here found that for the stratosphere - troposphere system with its strong vertical pressure gradient, EOFs are strongly dependent on the weighting of the data, while Principal Oscillation Patterns (POPs) are considerably less sensitive to an applied weighting while returning the dominant structures of variability. This encourages further research and application of POP modes for the use of stratosphere - troposphere coupling. These findings represent an improvement of the understanding of stratosphere - troposphere coupling and the results are another step in the direction of finding the mechanism of stratosphere - troposphere coupling and the downward influence after the occurrence of a stratospheric sudden warming, which may influence long-term weather prediction in the troposphere.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  Journal of the Atmospheric Sciences, 71 (12). pp. 4611-4620.
    Publication Date: 2017-10-24
    Description: Southern Hemisphere (SH) stratospheric variability is investigated with respect to chaotic behavior using time series from three different variables extracted from four different reanalysis products. The results are compared with the same analysis applied to the Northern Hemisphere (NH). The probability density functions (PDFs) for the SH show persistent deviations from a Gaussian distribution. The variability is given by white spectra for low frequencies, a slope of −1 for intermediate frequencies, and −3 slopes for high frequencies. Considering the time series for winter and summer separately, PDFs show a Gaussian distribution and the variability spectra change their slopes, indicating the role of the transition between winter and summer variability in shaping the time series. The correlation (D2) and the Kaplan–Yorke (DKY) dimensions are estimated. A finite value of the dimensions can be computed for each variable and data product, except for the NCEP zonal-mean zonal wind and temperature data, which violate the requirement D2 ≤ DKY, possibly owing to the presence of spurious trends and inconsistencies in the data. The value of D2 ranges between 2.6 and 3.9, while DKY ranges between 3.0 and 4.5. The results show that both D2 and DKY display large variability in their values both for different datasets and for different variables within the same dataset. The variability of the values of D2 and DKY thus leaves open the question about the existence of a low-dimensional attractor or if the finite dimensions of the system are the result of the projection of a larger attractor in a low-dimensional embedding space.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-24
    Description: Predictability on seasonal time scales over the North Atlantic–Europe region is assessed using a seasonal prediction system based on an initialized version of the Max Planck Institute Earth System Model (MPI-ESM). For this region, two of the dominant predictors on seasonal time scales are El Niño–Southern Oscillation (ENSO) and sudden stratospheric warming (SSW) events. Multiple studies have shown a potential for improved North Atlantic predictability for either predictor. Their respective influences are however difficult to disentangle, since the stratosphere is itself impacted by ENSO. Both El Niño and SSW events correspond to a negative signature of the North Atlantic Oscillation (NAO), which has a major influence on European weather. This study explores the impact on Europe by separating the stratospheric pathway of the El Niño teleconnection. In the seasonal prediction system, the evolution of El Niño events is well captured for lead times of up to 6 months, and stratospheric variability is reproduced with a realistic frequency of SSW events. The model reproduces the El Niño teleconnection through the stratosphere, involving a deepened Aleutian low connected to a warm anomaly in the northern winter stratosphere. The stratospheric anomaly signal then propagates downward into the troposphere through the winter season. Predictability of 500-hPa geopotential height over Europe at lead times of up to 4 months is shown to be increased only for El Niño events that exhibit SSW events, and it is shown that the characteristic negative NAO signal is only obtained for winters also containing major SSW events for both the model and the reanalysis data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-22
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Public Lecture] In: MIT Alumni Hamburg Roundtable mit Rudolf Scharping, 09.12.2015, Amerikazentrum Hamburg, Germany .
    Publication Date: 2015-12-22
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...