ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-03-11
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  , 10 pp.
    Publication Date: 2018-03-09
    Description: 13.4.-28.4.2017
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-11
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-01
    Description: Stocking can be an effective management and conservation tool, but it also carries the danger of eroding natural population structure, introducing non-native strains and reducing genetic diversity. Sea trout, the anadromous form of the brown trout (Salmo trutta), is a highly targeted species that is often managed by stocking. Here, we assess the present-day population genetic structure of sea trout in a backdrop of 125 years of stocking in Northern Germany. The study area is characterized by short distances between the Baltic and North Sea river watersheds, historic use of fish from both watersheds for stocking, and the creation of a potential migration corridor between the Baltic and North Sea with the opening of the Kiel Canal 120 years ago. A survey of 24 river systems with 180 SNPs indicates that moderate but highly significant population genetic structure has persisted both within and between the Baltic and North Sea. This genetic structure is characterized by (i) heterogeneous patterns of admixture between the Baltic and North Sea that do not correlate with distance from the Kiel Canal and are therefore likely due to historic stocking practises, (ii) genetic isolation by distance in the Baltic Sea at a spatial scale of 〈 200 km that is consistent with the homing behaviour of sea trout, and (iii) at least one genetically distinct Baltic Sea river system. In light of these results, we recommend keeping fish of North Sea and Baltic Sea origin separate for stocking, and restricting Baltic Sea translocations to neighbouring river systems.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-04-15
    Description: Genetic data have great potential for improving fisheries management by identifying the fundamental management units—that is, the biological populations—and their mixing. However, so far, the number of practical cases of marine fisheries management using genetics has been limited. Here, we used Atlantic cod in the Baltic Sea to demonstrate the applicability of genetics to a complex management scenario involving mixing of two genetically divergent populations. Specifically, we addressed several assumptions used in the current assessment of the two populations. Through analysis of 483 single nucleotide polymorphisms (SNPs) distributed across the Atlantic cod genome, we confirmed that a model of mechanical mixing, rather than hybridization and introgression, best explained the pattern of genetic differentiation. Thus, the fishery is best monitored as a mixed-stock fishery. Next, we developed a targeted panel of 39 SNPs with high statistical power for identifying population of origin and analyzed more than 2,000 tissue samples collected between 2011 and 2015 as well as 260 otoliths collected in 2003/2004. These data provided high spatial resolution and allowed us to investigate geographical trends in mixing, to compare patterns for different life stages and to investigate temporal trends in mixing. We found similar geographical trends for the two time points represented by tissue and otolith samples and that a recently implemented geographical management separation of the two populations provided a relatively close match to their distributions. In contrast to the current assumption, we found that patterns of mixing differed between juveniles and adults, a signal likely linked to the different reproductive dynamics of the two populations. Collectively, our data confirm that genetics is an operational tool for complex fisheries management applications. We recommend focussing on developing population assessment models and fisheries management frameworks to capitalize fully on the additional information offered by genetically assisted fisheries monitoring.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hinrichsen, Hans-Harald; von Dewitz, Burkhard; Dierking, Jan (2018): Variability of advective connectivity in the Baltic Sea. Journal of Marine Systems, 186, 115-122, https://doi.org/10.1016/j.jmarsys.2018.06.010
    Publication Date: 2019-04-30
    Description: This data set contains results produced by particle drift modeling exercises with the Kiel Baltic Sea Ice-Ocean Model (BSIOM) to analyze the variability of large scale drift patterns within the Baltic Sea. The provided parameters are: - Mean geographical distance [km], divided into north-south and east-west component - stability of particle drift distance - relative dispersal [%] The parameters were separated and averaged for the following time and space intervals: - drift duration [days] in 5 days increments from 5 to 50 days drift - vertical particle drift depth [m] with the following values: 2.5; 7.5; 12.5; 17.5; 25.0; 35.0; 45.0; 55.0; 65.0; 75.0; 85.0 - horizontal resolution: 54.0°N to 66.0°N in 0.5° increments and 10°E to 30°E in 1° increments. The analyses based on this data set are described in more detail and results are discussed in the article. Connectivity between different populations of a species is a central parameter in the fields of ecology and evolutionary biology. We here provided decadally, regionally, and depth layer resolved information on connectivity and dispersal patterns for the entire Baltic Sea as a tool for supporting population genetic and ecological studies. The general method to assess dispersal used was bio-physical modelling, which is suitable for biological dispersal that is highly influenced by the physical water transport in ocean circulation. The results were assessed from Lagrangian particle tracking using ocean circulation model outputs. Generally, for the whole Baltic Sea as well as for all subareas, we observed persistent patterns of dispersal that reflected the basin-like structure of the Baltic Sea, with less transport between the basins. At the same time, dispersal distance and in extension, local retention versus dispersal of particles to other sub-areas, varied considerably over four decades (1970–2010) and among regions within the Baltic Sea, corresponding to a range from high connectivity to partial dispersal barriers. Based on the example of Eastern Baltic cod we then investigated how our dispersal distance datasets can serve as a tool to assess dispersal and the expected connectivity among different populations of a species, as long as some biological information is available. For example, our finding of high dispersal of particles from the Bornholm Basin to the other Eastern Baltic basins could help to explain recent results indicating lack of genetic differentiation of cod across the eastern Baltic Sea. Our results also indicate that the shift in spawning time observed in cod over the past decades and the resulting exposure of eggs and larvae in the water column to a time of the year with a different current regime has likely affected egg and larval export. Finally, our case study also demonstrates how inter-annual variability of ocean current speed and direction at the time of peak reproduction is likely to affect the connectivity among the subareas in the Baltic. To conclude, connectivity datasets from this study are freely available, and can represent a powerful tool to apply in evolutionary and ecological studies of a variety of species in the Baltic Sea.
    Type: Dataset
    Format: application/zip, 2722.0 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  [Talk] In: 11. International Symposium on the Biology and Management of Coregonid Fishes, 26.-30.09.2011, Mondsee, Austria .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Talk] In: International conference on the restoration of streams with special emphasis on the houting and the Houting Project, 03.-05.10.2011, Tonder, Denmark .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 439 . pp. 203-212.
    Publication Date: 2018-06-21
    Description: In 1956, the shallow-water grouper Cephalopholis argus was introduced from Moorea (French Polynesia), where grouper diversity (14 species) is high, to the Main Hawaiian Islands (MHI), where only 2 rare native deep-water groupers occur. In this non-native environment, the species has flourished and has become the dominant apex predator on many reefs. In the present study, a comparison of non-native populations of C. argus in the MHI with native populations in Moorea showed that mean total length (32.0 vs. 26.9 cm), mass (722 vs. 326 g), growth, and body condition were each significantly elevated in the MHI. In addition, while an ontogenetic shift towards larger prey occurred in both locations, it was faster and more consistent in Moorea than in the MHI. As a result, while small C. argus of comparable size in the 2 locations consumed similar-sized prey, large C. argus in Moorea consumed significantly longer and deeper-bodied prey than their counterparts in the MHI. This pattern was unrelated to the size distributions of available prey and may thus reflect stronger intra- and interspecific competition for small prey in Moorea. Although ecological release in a broader sense (i.e. a combination of predator release, parasite release, and competitive release) may play a role, the most direct explanation for the observed differences between C. argus in native habitats in Moorea (with many competing grouper species) and non-native habitats in the MHI (few competitors) would be competitive release (here used in the sense of benefits resulting from the reduction of interspecific competition).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...