ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 29 (1985), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract A protein with an Mr of 55000 was isolated from glucose-grown Streptococcus faecalis cells. The protein becomes phosphorylated in a phosphoenolpyruvate-dependent reaction catalyzed by enzyme I and HPr of the bacterial phosphotransferase system. It did not stimulate phosphoenolpyruvate-dependent glucose phosphorylation. Several sugars were tested for their ability to dephosphorylate the phosphorylated protein in the presence of membrane fragments. Even though some of the sugars were able to dephosphorylate phospho-HPr quickly, the factor III-like 55-kDa protein remained phosphorylated. We therefore assumed that this protein is not involved in any sugar uptake reaction but that it exerts a regulatory function in Gram-positive bacteria comparable to the function of factor III specific for glucose in Escherichia coli.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: LevR, which controls the expression of the lev operon of Bacillus subtilis, is a regulatory protein containing an N-terminal domain similar to the NifA/NtrC transcriptional activator family and a C-terminal domain similar to the regulatory part of bacterial anti-terminators, such as BglG and LicT. Here, we demonstrate that the activity of LevR is regulated by two phosphoenolpyruvate (PEP)-dependent phosphorylation reactions catalysed by the phosphotransferase system (PTS), a transport system for sugars, polyols and other sugar derivatives. The two general components of the PTS, enzyme I and HPr, and the two soluble, sugar-specific proteins of the lev-PTS, LevD and LevE, form a signal transduction chain allowing the PEP-dependent phosphorylation of LevR, presumably at His-869. This phosphorylation seems to inhibit LevR activity and probably regulates the induction of the lev operon. Mutants in which His-869 of LevR has been replaced with a non-phosphorylatable alanine residue exhibited constitutive expression from the lev promoter, as do levD or levE mutants. In contrast, PEP-dependent phosphorylation of LevR in the presence of only the general components of the PTS, enzyme I and HPr, regulates LevR activity positively. This phosphorylation most probably occurs at His-585. Mutants in which His-585 has been replaced with an alanine had lost stimulation of LevR activity and PEP-dependent phosphorylation by enzyme I and HPr. This second phosphorylation of LevR at His-585 is presumed to play a role in carbon catabolite repression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Catabolite repression of Bacillus subtilis catabolic operons is supposed to occur via a negative regulatory mechanism involving the recognition of a cis-acting catabolite-responsive element (cre) by a complex of CcpA, which is a member of the GalR-LacI family of bacterial regulatory proteins, and the seryl-phos-phorylated form of HPr (P-ser-HPr), as verified by recent studies on catabolite repression of the gnt operon. Analysis of the gnt promoter region by deletions and point mutations revealed that in addition to the ere in the first gene (gntR) of the gnt operon (credown), this operon contains another ere located in the promoter region (creup). A translational gntR-lacZ fusion expressed under the control of various combinations of wild-type and mutant credown and creup was integrated into the chromosomal amyE locus, and then catabolite repression of p-galac-tosidase synthesis in the resultant integrants was examined. The in vivo results implied that catabolite repression exerted by creup was probably independent of catabolite repression exerted by credown; both creup and credown catabolite repression involved CcpA. Catabolite repression exerted by creup was independent of P-ser-HPr, and catabolite repression exerted by credown was partially independent of P-ser-HPr. DNase I footprinting experiments indicated that a complex of CcpA and P-ser-HPr did not recognize creup, in contrast to its specific recognition of credown. However, CcpA complexed with glucose-6-phosphate specifically recognized creup as well as credown, but the physiological significance of this complexing is unknown.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Bacillus subtilis homologous transcriptional antiterminators LicT and SacY control the inducible expression of genes involved in aryl β-glucoside and sucrose utilization respectively. Their RNA-binding activity is carried by the N-terminal domain (CAT), and is regulated by two similar C-terminal domains (PRD1 and PRD2), which are the targets of phosphorylation reactions catalysed by the phosphoenolpyruvate: sugar phosphotransferase system (PTS). In the absence of the corresponding inducer, LicT is inactivated by BglP, the PTS permease (EII) specific for aryl β-glucosides, and SacY by SacX, a negative regulator homologous to the EII specific for sucrose. LicT, but not SacY, is also subject to a positive control by the general PTS components EI and HPr, which are thought to phosphorylate LicT in the absence of carbon catabolite repression. Construction of SacY/LicT hybrids and mutational analysis enabled the location of the sites of this positive regulation at the two phosphorylatable His207 and His269 within LicT-PRD2, and suggested that the presence of negative charges at these sites is sufficient for LicT activation in vivo. The BglP-mediated inhibition process was found to essentially involve His100 of LicT-PRD1, with His159 of the same domain playing a minor role in this regulation. In vitro experiments indicated that His100 could be phosphorylated directly by the general PTS proteins, this phosphorylation being stimulated by P∼BglP. We confirmed that, similarly, the corresponding conserved His99 residue in SacY is the major site of the negative control exerted by SacX on SacY activity. Thus, for both antiterminators, the EII-mediated inhibition process seems to rely primarily on the presence of a negative charge at the first conserved histidine of the PRD1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 177 (1999), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A ptsH homologue of Streptomyces coelicolor A3(2) was identified in the emerging genome sequence, cloned in Escherichia coli and the S. coelicolor HPr over-produced and purified. The protein was phosphorylated in vitro in a phosphoenolpyruvate (PEP)-dependent manner by purified enzyme I (EI) from Bacillus subtilis, and much less efficiently in an ATP-dependent manner by purified HPr kinase, also from B. subtilis. There was no indication of ATP-dependent phosphorylation of the purified protein by cell extracts of either S. coelicolor or Streptomyces lividans. Deletion of the ptsH homologue from the S. coelicolor and S. lividans chromosomes had no effect on growth when fructose was supplied as sole carbon source, and in S. coelicolor it had no effect on glucose repression of agarase and galactokinase synthesis, suggesting that the HPr encoded by this gene does not play an essential role in fructose transport nor a general role in carbon catabolite repression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Bacillus subtilis glpFK operon encoding the glycerol transport facilitator (GlpF) and glycerol kinase (GlpK) is induced by glycerol-3-P and repressed by rapidly metabolizable sugars. Carbon catabolite repression (CCR) of glpFK is partly mediated via a catabolite response element cre preceding glpFK. This operator site is recognized by the catabolite control protein A (CcpA) in complex with one of its co-repressors, P-Ser-HPr or P-Ser-Crh. HPr is a component of the phosphoenolpyruvate:sugar phos-photransferase system (PTS), and Crh is an HPr homologue. The hprK-encoded HPr kinase phosphorylates HPr and Crh at Ser-46. But in neither ccpA nor hprK mutants was expression of a glpF′–lacZ fusion relieved from CCR, as a second, CcpA-independent CCR mechanism implying the terminator tglpFK, whose formation is prevented by the glycerol-3-P-activated antiterminator GlpP, is operative. Deletion of tglpFK led to elevated expression of the glpF′–lacZ fusion and to partial relief from CCR. CCR completely disappeared in ΔtglpFK mutants carrying a disruption of ccpA or hprK. The tglpFK-requiring CCR mechanism seems to be based on insufficient synthesis of glycerol-3-P, as CCR of glpFK was absent in ccpA mutants growing on glycerol-3-P or synthesizing H230R mutant GlpK. In cells growing on glycerol, glucose prevents the phosphorylation of GlpK by P~His-HPr. P~GlpK is much more active than GlpK, and the absence of P~GlpK formation in ΔptsHI strains prevents glycerol metabolism. As a consequence, only small amounts of glycerol-3-P will be formed in glycerol and glucose-exposed cells (inducer exclusion). The uptake of glycerol-3-P via GlpT provides high concentrations of this metabolite in the ccpA mutant and allows the expression of the glpF′–lacZ fusion even when glucose is present. Similarly, despite the presence of glucose, large amounts of glycerol-3-P are formed in a glycerol-exposed strain synthesizing GlpKH230R, as this mutant GlpK is as active as P~GlpK.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Bacillus subtilis ilv-leu operon involved in the biosynthesis of branched-chain amino acids is under negative regulation mediated by TnrA and CodY, which recognize and bind to their respective cis-elements located upstream of the ilv-leu promoter. This operon is known to be under CcpA-dependent positive regulation. We have currently identified a catabolite-responsive element (cre) for this positive regulation (bases −96 to −82; +1 is the ilv-leu transcription initiation base) by means of DNase I-footprinting in vitro, and deletion and base-substitution analyses of cre. Under nitrogen-rich growth conditions in glucose-minimal medium supplemented with glutamine and amino acids, CcpA and CodY exerted positive and negative regulation of ilv-leu, respectively, but TnrA did not function. Moreover, CcpA and CodY were able to function without their counteracting regulation of each other, although the CcpA-dependent positive regulation did not overcome the CodY-dependent negative regulation. Furthermore, under nitrogen-limited conditions in glucose-minimal medium with glutamate as the sole nitrogen source, CcpA and TnrA exerted positive and negative regulation, respectively, but CodY did not function. This CcpA-dependent positive regulation occurred without the TnrA-dependent negative regulation. However, the TnrA-dependent negative regulation did not occur without the CcpA-dependent positive regulation, raising the possibility that this negative regulation might decrease the CcpA-dependent positive regulation. The physiological role of this elaborate transcription regulation of the B. subtilis ilv-leu operon in overall metabolic regulation in this organism is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...