ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-06-11
    Description: We have used the iterative spectral fitting method to measure both the elastic and anelastic splitting functions of 20 inner core sensitive normal modes. These modes show significant improvement in spectral fit when anelastic splitting function coefficients d st are introduced in addition to the elastic splitting function coefficients c st . We employ two separate anelastic treatments: (i) fully anelastic measurement, in which a complete set of anelastic splitting function coefficients is measured in addition to the elastic coefficients, and (ii) zonal anelastic measurement, in which anelasticity is only allowed in zonal splitting function coefficients. Together, these two approaches confirm that normal modes sensitive to the Earth’s inner core resolve zonally dominant elastic and anelastic structures. The zonal dominance of anelasticity suggests that the inner core exhibit cylindrical attenuation anisotropy in addition to cylindrical velocity anisotropy. In particular, the zonally dominant anelasticity correlates with zonal elastic structure, that is, directions of higher velocity in the inner core also appear more attenuating.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-11
    Description: The splitting of the Earth's free-oscillation spectra places important constraints on the wave speed and density structure of the Earth's mantle and core. We present a new set of 164 self-coupled and 32 cross-coupled splitting functions. They are derived from modal spectra up to 10 mHz for 91 events with M w  ≥ 7.4 from the last 34 yr (1976–2010). Our data include the 2001 June 23 Peru event ( M w  = 8.4), the Sumatra events of 2004 ( M w  = 9.0) and 2005 ( M w  = 8.6), the 2008 Wenchuan, China event ( M w  = 7.9) and the 2010 Chile event ( M w  = 8.8). The new events provide significant improvement of data coverage particularly in continental areas. Almost half of the splitting functions have never been measured before. In particular, we measured 33 new modes sensitive to mantle compressional wave velocity, 10 new inner-core sensitive modes and 22 new cross-coupled splitting functions. These provide new constraints on the large-scale compressional structure of the mantle and the odd-degree structure of the mantle and inner core and can be used in future inversions of heterogeneous Earth structure. Our new splitting function coefficient data set will be available online.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-06
    Description: The seismic structure of Earth's inner core is highly complex, displaying strong anisotropy and further regional variations. However, few seismic waves are sensitive to the inner core and fundamental questions regarding the origin of the observed seismic features remain unanswered. Thus, new techniques to observe different types of inner core waves are imperative to improve data coverage. Here, we detail our method for detecting exotic inner core phases such as PKJKP and PKIIKP, using inner core compressional waves as proof of concept. We use phase weighted stacking on long period data from a global distribution of stations, and employ several synthetic methods, including normal mode summation and SPECFEM, to identify and confirm the inner core phases. We present evidence for two observations of exotic inner core compressional waves, and apply the technique to a previously detected inner core shear wave. A possible new inner core shear wave remains unconfirmed. Additionally, we show how our method is important for rejecting potential observations, and distinguishing between waves with similar traveltime and slowness. The method is most successful for detecting exotic inner core compressional waves, and will provide a new approach for studying the compressional wave structures in the upper inner core.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-16
    Description: The structure of the Earth's inner core is not well known between depths of ~100–200 km beneath the inner core boundary. This is a result of the PKP core phase triplication and the existence of strong precursors to PKP phases, which hinder the measurement of inner core compressional PKIKP waves at epicentral distances between roughly 143 and 148°. Consequently, interpretation of the detailed structure of deeper regions also remains difficult. To overcome these issues we stack seismograms in slowness and time, separating the PKP and PKIKP phases which arrive simultaneously but with different slowness. We apply this method to study the inner core's Western hemisphere beneath South and Central America using paths travelling in the quasi-polar direction between 140 and 150° epicentral distance, which enables us to measure PKiKP–PKIKP differential traveltimes up to greater epicentral distance than has previously been done. The resulting PKiKP–PKIKP differential traveltime residuals increase with epicentral distance, which indicates a marked increase in seismic velocity for polar paths at depths greater than 100 km compared to reference model AK135. Assuming a homogeneous outer core, these findings can be explained by either (i) inner core heterogeneity due to an increase in isotropic velocity or (ii) increase in anisotropy over the studied depth range. Although this study only samples a small region of the inner core and the current data cannot distinguish between the two alternatives, we prefer the latter interpretation in the light of previous work.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉The mantle transition zone is the region between the globally observed major seismic velocity discontinuities around depths of 410 and 660 km and is important for determining the style of convection and mixing between the upper and the lower mantle. In this study, P-to-S converted waves, or receiver functions, are used to study these discontinuities beneath the Alaskan subduction zone, where the Pacific plate subducts underneath the North American plate. Previous tomographic models do not agree on the depth extent of the subducting slab, therefore improved imaging of the Earth structure underneath Alaska is required. We use 27,800 high quality radial receiver functions to make common conversion point stacks. Upper mantle velocity anomalies are accounted for by two recently published regional tomographic S-wave velocity models. Using these two tomographic models, we show that the discontinuity depths within our CCP stacks are highly dependent on the choice of velocity model, between which velocity anomaly magnitudes vary greatly. We design a quantitative test to show whether the anomalies in the velocity models are too strong or too weak, leading to over- or under-corrected discontinuity depths. We also show how this test can be used to rescale the 3D velocity corrections in order to improve the discontinuity topography maps. After applying the appropriate corrections, we find a localised thicker mantle transition zone and an uplifted 410 discontinuity, which show that the slab has clearly penetrated into the mantle transition zone. Little topography is seen on the 660 discontinuity, indicating that the slab has probably not reached the lower mantle. In the southwest, P410s arrivals have very small amplitudes or no significant arrival at all. This could be caused by water or basalt in the subducting slab, reducing the strength at the 410, or by topography on the 410 discontinuity, preventing coherent stacking. In the southeast of Alaska, a thinner mantle transition zone is observed. This area corresponds to the location of a slab window, and thinning of the mantle transition zone may be caused by hot mantle upwellings.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017
    Description: 〈span〉〈div〉Summary〈/div〉Seismic free oscillations, or normal modes, provide a convenient tool to calculate low-frequency seismograms in heterogeneous Earth models. A procedure called ‘full mode coupling’ allows the seismic response of the Earth to be computed. However, in order to be theoretically exact, such calculations must involve an infinite set of modes. In practice, only a finite subset of modes can be used, introducing an error into the seismograms. By systematically increasing the number of modes beyond the highest frequency of interest in the seismograms, we investigate the convergence of full-coupling calculations. As a rule-of-thumb, it is necessary to couple modes 1–2 mHz above the highest frequency of interest, although results depend upon the details of the Earth model. This is significantly higher than has previously been assumed. Observations of free oscillations also provide important constraints on the heterogeneous structure of the Earth. Historically, this inference problem has been addressed by the measurement and interpretation of splitting functions. These can be seen as secondary data extracted from low frequency seismograms. The measurement step necessitates the calculation of synthetic seismograms, but current implementations rely on approximations referred to as self- or group-coupling and do not use fully accurate seismograms. We therefore also investigate whether a systematic error might be present in currently published splitting functions. We find no evidence for any systematic bias, but published uncertainties must be doubled to properly account for the errors due to theoretical omissions and regularization in the measurement process. Correspondingly, uncertainties in results derived from splitting functions must also be increased. As is well known, density has only a weak signal in low-frequency seismograms. Our results suggest this signal is of similar scale to the true uncertainties associated with currently published splitting functions. Thus, it seems that great care must be taken in any attempt to robustly infer details of Earth's density structure using current splitting functions.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-18
    Description: We present the new model SP12RTS of isotropic shear-wave ( V S ) and compressional-wave ( V P ) velocity variations in the Earth's mantle. SP12RTS is derived using the same methods as employed in the construction of the shear-wave velocity models S20RTS and S40RTS, and the same data types. SP12RTS includes additional traveltime measurements of P -waves and new splitting measurements: 33 normal modes with sensitivity to the compressional-wave velocity and 9 Stoneley modes with sensitivity primarily to the lowermost mantle. Contrary to S20RTS and S40RTS, variations in V S and V P are determined without invoking scaling relationships. Lateral velocity variations in SP12RTS are parametrised using spherical harmonics up to degree 12, to focus on long-wavelength features of V S and V P and their ratio R . Large-low-velocity provinces (LLVPs) are observed for both V S and V P . SP12RTS also features an increase of R up to 2500 km depth, followed by a decrease towards the core–mantle boundary. A negative correlation between the shear-wave and bulk-sound velocity variations is observed for both the LLVPs and the surrounding mantle. These characteristics can be explained by the presence of post-perovskite or large-scale chemical heterogeneity in the lower mantle.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-05
    Description: High frequency precursors to P ' P ' almost invariably observe a narrow 660 km discontinuity, whereas PP precursor studies at long periods struggle to detect a reflection from the ‘660’ despite its apparent sharpness to P ' P '. To investigate these contradictory observations we compare PP and P ' P ' precursors in the same region. Using short period P ' P ' precursors we observe a sharp 660 km discontinuity, which appears to vary in depth substantially. The apparent topography on the ‘660’ is too large to originate solely from thermal variations, regardless of its cause, therefore indicating chemical variations at the base of the mantle transition zone. Long period P ' P ' precursors show no ‘660’ as they are sensitive to a larger area and thus average out the apparent topography, in agreement with long period PP precursors. Instead, we see some evidence in both long period data types for a reflection from 720 km depth, which is likely to correspond to a phase change in the garnet system.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-06
    Description: Seismic free oscillations, or normal modes, provide a convenient tool to calculate low-frequency seismograms in heterogeneous Earth models. A procedure called ‘full mode coupling’ allows the seismic response of the Earth to be computed. However, in order to be theoretically exact, such calculations must involve an infinite set of modes. In practice, only a finite subset of modes can be used, introducing an error into the seismograms. By systematically increasing the number of modes beyond the highest frequency of interest in the seismograms, we investigate the convergence of full-coupling calculations. As a rule-of-thumb, it is necessary to couple modes 1–2 mHz above the highest frequency of interest, although results depend upon the details of the Earth model. This is significantly higher than has previously been assumed. Observations of free oscillations also provide important constraints on the heterogeneous structure of the Earth. Historically, this inference problem has been addressed by the measurement and interpretation of splitting functions. These can be seen as secondary data extracted from low frequency seismograms. The measurement step necessitates the calculation of synthetic seismograms, but current implementations rely on approximations referred to as self- or group-coupling and do not use fully accurate seismograms. We therefore also investigate whether a systematic error might be present in currently published splitting functions. We find no evidence for any systematic bias, but published uncertainties must be doubled to properly account for the errors due to theoretical omissions and regularization in the measurement process. Correspondingly, uncertainties in results derived from splitting functions must also be increased. As is well known, density has only a weak signal in low-frequency seismograms. Our results suggest this signal is of similar scale to the true uncertainties associated with currently published splitting functions. Thus, it seems that great care must be taken in any attempt to robustly infer details of Earth's density structure using current splitting functions.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-11-04
    Description: The Earth's inner core displays transverse velocity anisotropy with cylindrical symmetry, which causes the anomalous zonal splitting of inner core sensitive normal modes. In this paper, we extend existing theory for calculating normal mode splitting from models of cylindrical velocity anisotropy to include models of anelastic attenuation anisotropy. Furthermore, we derive the equations that can be used to rewrite the attenuation anisotropy parameters natural to normal mode considerations in terms of body wave attenuation anisotropy for compressional and shear waves.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...