ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
  • 2
    Publication Date: 2020-11-20
    Description: The Copernicus Marine Environment Monitoring Service (CMEMS) Ocean State Report (OSR) provides an annual report of the state of the global ocean and European regional seas for policy and decision-makers with the additional aim of increasing general public awareness about the status of, and changes in, the marine environment. The CMEMS OSR draws on expert analysis and provides a 3-D view (through reanalysis systems), a view from above (through remote-sensing data) and a direct view of the interior (through in situ measurements) of the global ocean and the European regional seas. The report is based on the unique CMEMS monitoring capabilities of the blue (hydrography, currents), white (sea ice) and green (e.g. Chlorophyll) marine environment. This first issue of the CMEMS OSR provides guidance on Essential Variables, large-scale changes and specific events related to the physical ocean state over the period 1993–2015. Principal findings of this first CMEMS OSR show a significant increase in global and regional sea levels, thermosteric expansion, ocean heat content, sea surface temperature and Antarctic sea ice extent and conversely a decrease in Arctic sea ice extent during the 1993–2015 period. During the year 2015 exceptionally strong large-scale changes were monitored such as, for example, a strong El Niño Southern Oscillation, a high frequency of extreme storms and sea level events in specific regions in addition to areas of high sea level and harmful algae blooms. At the same time, some areas in the Arctic Ocean experienced exceptionally low sea ice extent and temperatures below average were observed in the North Atlantic Ocean.
    Description: Published
    Description: s235–s320
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-04
    Description: Since 2016, the Copernicus Marine Environment Monitoring Service (CMEMS) has produced and disseminated an ensemble of four global ocean reanalyses produced at eddy-permitting resolution for the period from 1993 to present, called GREP (Global ocean Reanalysis Ensemble Product). This dataset offers the possibility to investigate the potential benefits of a multi-system approach for ocean reanalyses, since the four reanalyses span by construction the same spatial and temporal scales. In particular, our investigations focus on the added value of the information on the ensemble spread, implicitly contained in the GREP ensemble, for temperature, salinity, and steric sea level studies. It is shown that in spite of the small ensemble size, the spread is capable of estimating the flow-dependent uncertainty in the ensemble mean, although proper re-scaling is needed to achieve reliability. The GREP members also exhibit larger consistency (smaller spread) than their predecessors, suggesting advancement with time of the reanalysis vintage. The uncertainty information is crucial for monitoring the climate of the ocean, even at regional level, as GREP shows consistency with CMEMS high-resolution regional products and complement the regional estimates with uncertainty estimates. Further applications of the spread include the monitoring of the impact of changes in ocean observing networks; the use of multi-model ensemble anomalies in hybrid ensemble-variational retrospective analysis systems, which outperform static covariances and represent a promising application of GREP. Overall, the spread information of the GREP product is found to significantly contribute to the crucial requirement of uncertainty estimates for climatic datasets.
    Description: Data from the reanalyses presented in this work are available from the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/). Part of this work was supported by the EOS COST Action (“Evaluation of Ocean Synthesis”, http://eos-cost.eu/) through its Short Term Scientific Missions program. The full C-GLORS dataset is available at http://c-glors.cmcc.it. This work has received funding from the Copernicus Marine Environment Monitoring Service (CMEMS).
    Description: Published
    Description: 287-312
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-23
    Description: Si listano le singole sezioni in cui S.Simoncelli ha contribuito. Ogni sezione puo' essere citata separatamente dal report 1.1 Ocean temperature and salinity S. Mulet, B. Buongiorno Nardelli, S. Good, A. Pisano, E. Greiner, M. Monier E. Autret, L. Axell, F. Boberg, S. Ciliberti, M. Drévillon, R. Droghei, O. Embury, J. Gourrion, J. Høyer, M. Juza, J. Kennedy, B. Lemieux-Dudon, E. Peneva, R. Reid, S. Simoncelli, A. Storto, J. Tinker, K. von Schuckmann, S. L. Wakelin. 2.1. Ocean heat content ..K. von Schuckmann, A. Storto, S. Simoncelli, R. P. Raj, A.Samuelsen, A. de Pascual Collar, M. Garcia Sotillo, T Szerkely, M. Mayer, K. A. Peterson, H. Zuo, G. Garric, M. Monier. 3.4 Water mass formation processes in the Mediterranean Sea over the past 30 years S. Simoncelli, Nadia Pinardi, C. Fratianni, C. Dubois, G. Notarstefano. 3.5 Ventilation of the Western Mediterranean Deep Water through the Strait of Gibraltar S. Sammartino, J. García Lafuente, C. Naranjo, S. Simoncelli. 4.4 Unusual salinity pattern in the South Adriatic Sea in 2016 Z. Kokkini, G. Notarstefano P-M Poulain, E. Mauri, R. Gerin, S. Simoncelli
    Description: The oceans regulate our weather and climate from global to regional scales. They absorb over 90% of accumulated heat in the climate system (IPCC 2013 IPCC. 2013. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors]. Cambridge: Cambridge University Press, 1535. doi: 10.1017/CBO9781107415324. [Crossref], , [Google Scholar]) and over a quarter of the anthropogenic carbon dioxide (Le Quéré et al. 2016 Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, et al. 2016. Global carbon budget 2016. Earth Syst Sci Data. 8( 2): 605– 649. doi: 10.5194/essd-8-605-2016 [Crossref], [Web of Science ®], , [Google Scholar]). They provide nearly half of the world’s oxygen. Most of our rain and drinking water is ultimately regulated by the sea. The oceans provide food and energy and are an important source of the planet's biodiversity and ecosystem services. They are vital conduits for trade and transportation and many economic activities depend on them (OECD 2016 OECD . 2016. The ocean economy in 2030. Paris : OECD Publishing. doi: 10.1787/9789264251724-en. [Crossref], , [Google Scholar]). Our oceans are, however, under threat due to climate change and other human induced activities and it is vital to develop much better, sustainable and science-based reporting and management approaches (UN 2017 UN . 2017. Report of the United Nations conference to support the implementation of sustainable development goal 14: Conserve and sustainably use the oceans, seas and marine resources for sustainable development (Advance unedited version). https://sustainabledevelopment.un.org/content/documents/15662FINAL_15_June_2017_RepoRe_Goal_14.pdf . [Google Scholar]). Better management of our oceans requires long-term, continuous and state-of-the art monitoring of the oceans from physics to ecosystems and global to local scales. The Copernicus Marine Environment Monitoring Service (CMEMS) has been set up to address these challenges at European level. Mercator Ocean was tasked in 2014 by the European Union under a delegation agreement to implement the operational phase of the service from 2015 to 2021 (CMEMS 2014 CMEMS . 2014. Technical annex to the delegation agreement with Mercator Ocean for the implementation of the Copernicus Marine Environment Monitoring Service (CMEMS). www.copernicus.eu/sites/default/files/library/CMEM_TechnicalAnnex_PUBLIC.docx.pdf . [Google Scholar]). The CMEMS now provides regular and systematic reference information on the physical state, variability and dynamics of the ocean, ice and marine ecosystems for the global ocean and the European regional seas (Figure 0.1; CMEMS 2016 CMEMS . 2016. High level service evolution strategy, a document prepared by Mercator Ocean with the support of the CMEMS STAC. [Google Scholar]). This capacity encompasses the description of the current situation (analysis), the prediction of the situation 10 days ahead (forecast), and the provision of consistent retrospective data records for recent years (reprocessing and reanalysis). CMEMS provides a sustainable response to European user needs in four areas of benefits: (i) maritime safety, (ii) marine resources, (iii) coastal and marine environment and (iv) weather, seasonal forecast and climate.
    Description: Copernicus Marine Environment Monitoring Service
    Description: Published
    Description: S1-S142
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...